DAFTAR PUSTAKA

- [1] E.B. Podgorsak, *Radiation Oncology Physics: A Handbook for Teachers and Students*. Vienna: IAEA, 2005.
- [2] R.Susworo & Henry Kodrat, Dasar-Dasar Radioterapi dan Tata Laksana Radioterapi Penyakit Kanker, Edisi II. Jakarta: Penerbit Universitas Insonesia (UI Press), 2017.
- [3] F. M. Khan, *The physics of radiation therapy*. Lippincott Williams & Wilkins, 2003.
- [4] W. E. Powers, J. J. Kinzie, A. J. Demidecki, J. S. Bradfield, and A. Feldman, "A New System of Field Shaping for External-Beam Radiation Therapyl," 1973.
- [5] M. Navitha, N. Jitendra, N. S. Silambarasan, P. Kumar, and P. Kumar, "COMPARISON OF ELECTRON BEAM TRANSMISSION OF DIFFERENT ENERGIES WITH TWO DIFFERENT BLOCK MATERIALS AT DIFFERENT PLACEMENT POSITIONS WITHIN THE APPLICATOR," SRMS JOURNAL OF MEDICAL SCIENCE, vol. 1, no. 02, pp. 73–76, Dec. 2016, doi: 10.21761/jms.v1i2.7126.
- [6] H. J. Kang, S. W. Kim, and S. H. Son, "The feasibility of a heart block with an electron compensation as an alternative whole breast radiotherapy technique in patients with underlying cardiac or pulmonary disease," *PLoS One*, vol. 12, no. 9, Sep. 2017, doi: 10.1371/journal.pone.0184137.
- [7] A. Al-aghbari and M. I. El gohary, "Effect of block tray on Build-up dose in γ- ray radiotherapy," *Egyptian Journal of Biomedical Engineering and Biophysics*, vol. 0, no. 0, pp. 27–33, Mar. 2022, doi: 10.21608/ejbbe.2022.84461.1045.
- [8] M. Zulhasyikin Abdul Penyu, N. Sabihah Zakaria, Y. Yusoff, and A. Nuk Shabandi, "Effect of cerrobend thickness on electron transmission in megaelectronvolt (MeV) produced by clinical linear accelerator," *Mater Today Proc*, Mar. 2023, doi: 10.1016/j.matpr.2023.03.267.
- [9] S. Pusat Pengembangan Sistem Reaktor Maju -Batan, "Prosiding Seminar ke-7 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklir Bandung," 2002.
- [10] Drs. Mukhlis Akadi, Dasar-Dasar Proteksi Radiasi. Jakarta: PT Rineka Cipta, 2000.
- [11] M. G. Stabin, *Radiation protection and dosimetry : an introduction to health physics*. Springer, 2007.
- [12] E. B. Podgorsak, "Radiation Physics for Medical Physicists (Biological and Medical Physics, Biomedical Engineering)," 2010. [Online]. Available: http://www.springer.com/series/3740

- [13] M. Azam, K. Sofjan Firdausi, and S. Silvani, "PENENTUAN KARAKTERISASI CERROBEND SEBAGAI 'WEDGE FILTER' PADA PESAWAT TELETERAPI 60 Co," 2006.
- [14] W. M. Haynes, "HANDBOOK OF CHEMISTRY AND PHYSICS," 2015.
- [15] A. & H. S. Yanyah, "Penentuan nulai koefisien Serapan Bahan dan Dosis Radiasi Pada Variasi Kombinasi Kayu dan Aluminium," *Youngster Physics Journal*, vol. 4, no. 1, pp. 87–92, 2015.
- [16] L. L. & Z. W. W. Radulovic, "PFTE (Polytetrafluoroethylene; Teflon)," Encyclopedia of Toxicology (Third Edition), 2014.
- [17] R. A. Pethrick, "Acoustical Properties," in *Comprehensive Polymer Science and Supplements*, Elsevier, 1989, pp. 571–599. doi: 10.1016/B978-0-08-096701-1.00054-9.
- [18] L. McKeen, The Effect of Sterilization on Plastics and Elastomers. Elsevier, 2012. doi: 10.1016/C2011-0-06772-8.
- [19] A. Yakubu, Z. Abbas, and M. Hashim, "Effect of Material Thickness on Attenuation (dB) of PTFE Using Finite Element Method at X-Band Frequency," Advances in Materials Science and Engineering, vol. 2014, pp. 1–5, 2014, doi: 10.1155/2014/965912.
- [20] Shani Gad, "RADIATION DOSIMETRY : Instrumentation and Methodes Second Edition," 2021.
- [21] BAPETEN, "KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 01/Ka-BAPETEN/V-99 TENTANG KETENTUAN KESELAMATAN KERJA TERHADAP RADIASI KEPALA BADAN PENGAWAS TENAGA NUKLIR," 1999.
- [22] J. Andersson *et al.*, "Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP," *Med Phys*, vol. 48, no. 7, Jul. 2021, doi: 10.1002/mp.14910.
- [23] J. Fisika, F. Sains dan Matematika, U. Diponegoro, J. Soedarto, and S. Tembalang Semarang, "ANALISIS DOSIS SERAP RELATIF BERKAS ELEKTRON DENGAN VARIASI KETEBALAN BLOK CERROBEND PADA PESAWAT LINEAR ACCELERATOR Lamtiyah Ikha Indriyana, Eko Hidayanto, Zaenal Arifin," 2014.
- [24] A. G. E. Abbady and A. M. El-Arabi, "Naturally occurring radioactive material from the aluminium industry - A case study: The Egyptian Aluminium Company, Nag Hammady, Egypt," *Journal of Radiological Protection*, vol. 26, no. 4, Dec. 2006, doi: 10.1088/0952-4746/26/4/006.
- [25] N. Yavuzkanat, "MONTE CARLO SIMULATION OF NEWLY DESIGNED SHIELDING BLOCKS FOR CO-60 AND ELECTRON BEAM THERAPY," 2022.

- [26] John Archibald Wheeler dan Rolfe L, *The Physics of Radiation*. Addison-Wesley Publishing Company, 1962.
- [27] C. V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, and P. P. Pawar, "Polymeric composite materials for radiation shielding: a review," *Environmental Chemistry Letters*, vol. 19, no. 3. Springer Science and Business Media Deutschland GmbH, pp. 2057–2090, Jun. 01, 2021. doi: 10.1007/s10311-021-01189-9.
- [28] Iftikhar A, K. Mb, Sbilal A, Khwaja A, and Khushnaseeb A, "Comparison of Lead and Cerrobend Blocks for Incident Photon Flux of 6 and 15 MV X-rays," 2011.
- [29] Laurence W. McKeen, *Film Properties of Plastics and Elastomers*. Elsevier, 2012. doi: 10.1016/C2011-0-05606-5.

LAMPIRAN

Lampiran-1: Hasil Penelitan oleh M, Navitha.dkk Tahun 2016

Table 2. 1 Hasil transmisi dengan energi 20 MeV pada tiga penempatan blok dan dua material berbeda

Energi: 2	20MeV		MU: 1	00	D	epth: R ₈₅	<i>pth</i> : R ₈₅ (6.8 cm)		
	All Meter	Readings	s are in n	anoColo	umb (x 10) ⁻⁹ C)			
	Open	-	Leaa	l Equival	et	Cerrobend			
BLOCK	Field	1mm	2mm	3mm	4mm	5mm	5mm		
POSITION	MR	MR	MR	MR	MR	MR	MR		
	1.541	0.609	0.251	0.1452	0.12	<mark>0.</mark> 1106	0.158		
LOWER LEVE <mark>L</mark>	1.537	0.607	0.252	0. <mark>144</mark> 8	0.119	<mark>0.</mark> 110 9	0.158		
	1.54	0 <mark>.608</mark>	0.252	0.145	0.1195	<mark>0.</mark> 1108	0.158		
Average	1.539	0 <mark>.608</mark>	0.0251	0.145	0.1195	<mark>0.</mark> 110 8	0.158		
Transmission %		<mark>39</mark> .5	16.35	9.42	7.76	7.2	10.27		
CENTER	1.541	0.37	0.165	0.1133	0.0974	<mark>0.</mark> 0873	0.1168		
LEVEL	1.537	0.369	0.165	0.1133	0.097	<mark>0.</mark> 0877	0.1163		
	1.54	0.369	0.165	0.1133	0.0972	<mark>0.</mark> 0875	0.1165		
Average	1.539	0.3693	0.165	0.1133	0.0972	<mark>0.</mark> 0875	0.1165		
Transmission %	~ "	23.99	10.72	7.36	6.31	5.68	7.57		
UPPER	1.541	0.312	0.143	0.0991	0.087	0.081	0.1053		
LEVEL	1.537	0.313	0.142	0.0989	0.087	0.0804	0.1045		
	1.54	0.311	0.141	0.0989	0.087	0.0808	0.1049		
Average	1.539	0.312	0.142	0.099	0.087	0.0807	0.1049		
Transmission %		20.77	9.22	6.43	5.65	5.24	6.82		

Table 2. 2 Hasil Transmisi dengan energi 16 MeV pada tiga penempatan blok dan

dua material berbeda

Energi: 16MeV	MU: 100	<i>Depth</i> : R ₈₅ (5.6 cm)
	All Meter Readings are in n	anoColoumb (x10 ⁻⁹ C)

		Open	Lec	ad Equiva	alence sh	neet		Cerrobend
BLOCK POSITI	ION .	Field	1mm	2mm	3mm	4mm	5mm	5mm
		MR	MR	MR	MR	MR	MR	MR
	-	1.521	0.426	0.136	0.081	0.0732	0.0694	0.084
LOWER LEVEL	,	1.52	0.427	0.136	0.08	0.0731	0.0691	0.0855
		1.519	0.425	0.136	0.08	0.073	0.0693	0.0848
Average		1.52	0.426	0.136	0.0803	0.0731	0.0693	0.0848
Transmission %			28.03	8.95	5.29	4.81	4.56	5.58
CENTER	-	1.521	0.228	0.0875	0.0616	0.0559	<mark>0</mark> .0528	0.0627
LEVEL		1.52	0.229	0.087	0.061	0.0559	<mark>0</mark> .0529	0.0626
		1.519	0.227	0.0872	0.0613	0.0559	<mark>0</mark> .053	0.06265
Average		1.52	0.228	0.08723	0.0613	0.0559	<mark>0</mark> .0529	0.06265
Transmission %		_	15	5.74	4.03	3.68	3.48	4.12
UPPER		1.521	0.186	0.0737	0.0557	0.0507	<mark>0</mark> .0477	0.0569
LEVEL		1.52	0.185	0.0737	0.0556	0.051	<mark>0</mark> .0475	0.057
	-	1.519	<mark>0.</mark> 187	0.0737	0.0555	0.0508	<mark>0</mark> .0476	0.05695
Average		1.52	0.186	0.0737	0.0556	0.0508	<mark>0</mark> .0476	0.05695
Transmission %			12.24	4.85	3.66	3.34	3.13	3.75

Table 2. 3 Hasil Transmisi dengan energi 12 MeV pada tiga penempatan blok dan dua material berbeda

E i tort II	- then	1.0	100	o								
Energi: 12MeV	<u> </u>	MU): 100	V.2,	Dept	h: R ₈₅ (4	l.3 cm)					
All Meter Readings are in nanoColoumb $(x10^{-9}C)$												
	Open	Lea	ad Equiv	alence s	heet		Cerrobend					
BLOCK POSITION	Field	1mm	2mm	3mm	4mm	5mm	5mm					
	MR	MR	MR	MR	MR	MR	MR					
	1.508	0.243	0.0552	0.0433	0.0408	0.0389	0.045					
LOWER LEVEL	1.507	0.241	0.0552	0.0435	0.0414	0.0386	0.0447					
	1.507	0.242	0.0552	0.0434	0.0404	0.0388	0.0448					
Average	1.507	0.2419	0.0552	0.0434	0.0409	0.0388	0.0448					
Transmission %		16.05	3.66	2.88	2.71	2.57	2.98					

CENTER		1.508	0.1168	0.0382	0.031	0.0294	0.0275	0.031
LEVEL		1.507	0.1167	0.0382	0.031	0.0296	0.0271	0.032
		1.507	0.117	0.0382	0.031	0.0292	0.0273	0.0315
Average		1.507	0.1168	0.0382	0.031	0.0294	0.0273	0.0315
Transmission	%		7.75	2.54	2.06	1.95	1.81	2.09
UPPER		1.508	0.0929	0.0318	0.0269	0.0256	0.024	0.028
LEVEL		1.507	0.0927	0.0321	0.0271	0.0258	0.0244	0.027
		1.507	0.0926	0.032	0.0267	0.0257	0.0242	0.0275
Average		1.507	0.0927	0.032	0.0269	0.0257	0.0242	0.0275
Transmission	<mark>%</mark>		6.15	2.12	1.78	1.7	1.61	1.82

Table 2. 4 Hasil Transmisi dengan energi 9 MeV pada tiga penempatan blok dan dua

material berbeda

Energi: 9 <mark>M</mark> eV		MU	: 100	07	Deptl	n: R ₈₅ (3	.0cm)
	All Mete	<mark>er R</mark> eadi	ngs are <mark>i</mark>	in nanoC	Coloumb	(x10 ⁻⁹ C)	
	Open		Lead	<mark>Equival</mark>	ence sh <mark>e</mark>	et	Cerrobend
BLOCK POS <mark>IT</mark> ION	Field	/1mm	2mm	3mm	4mm	5mm	5mm
	MR	MR	MR	MR	MR	MR	MR
	1.5 <mark>07</mark>	0.13	0.024	0.024	0.021	0.0197	0.0225
LOWER LEV <mark>EL</mark>	1.502	0.131	0.025	0.022	0.0211	0.0194	0.0227
	1.504	0.131	0.024	0.023	0.0209	0.0196	0.0226
Average	1.504	0.1307	0.0243	0.023	0.021	0.0196	0.0226
Transmission %		8.69	1.62	1.53	1.4	1.3	1.5
CENTER	1.507	0.0567	0.0192	0.0186	0.0178	0.0161	0.015
LEVEL	1.502	0.0564	0.0192	0.0191	0.0177	0.0159	0.0148
	1.504	0.0566	0.0192	0.0189	0.0176	0.016	0.0149
Average	1.504	0.0566	0.0192	0.0189	0.0177	0.016	0.0149
Transmission %		3.76	1.28	1.25	1.18	1.06	0.99
UPPER	1.507	0.0454	0.0144	0.0135	0.0122	0.0118	0.0135
LEVEL	1.502	0.0455	0.0139	0.0135	0.0121	0.0121	0.0138
	1.504	0.0454	0.0142	0.0136	0.012	0.0119	0.0136
Average	1.504	0.0454	0.0142	0.0135	0.0121	0.0119	0.0136

Transmission %	3.02	0.94	0.9	0.8	0.79	0.91

Table 2. 5 Hasil Transmisi dengan energi 6 MeV pada tiga penempatan blok dan dua material berbeda

Energy	y: 6MeV		MU:	100	D	epth: R ₈₅ (2.0 cm)				
	All N	/leter Rea	dings are	in nanoC	Coloumb	(x10 ⁻⁹ C))			
	Ope	en	Lead Equivalence sheet Cerrobe							
BLOCK POSIT	ION Field	ld 1mn	n 2mm	3mm	4mm	5mm	5mm			
	Ml	R MR	MR	MR	MR	MR	MR			
	1.43	33 0.035	6 0.0128	0.011	0.0107	<mark>0</mark> .0099	0.0114			
LOWER L <mark>E</mark> V	EL 1.43	33 0.035	5 <mark>4 0.0</mark> 127	0.0112	0.0111	<mark>0</mark> .0109	0.0114			
	1.43	35 0.035	58 <mark>0.</mark> 0127	0.012	0.0104	<mark>0</mark> .0106	0.0114			
Average	1.43	3 <mark>4</mark> 0.035	56 0.0127	0.0114	0.0107	<mark>0</mark> .0105	0.0114			
Transmission <mark>%</mark>		2.48	³ 0.89	0.8	0.75	0.73	0.79			
CENTER	1.43	3 3 0.0 1	7 0.0087	0.0075	0.0073	<mark>0</mark> .0064	0.0077			
LEVEL	1.43	33 <mark>0.0</mark> 17	⁷ 3 0.0087	0.0079	0.007	<mark>0</mark> .0064	0.0072			
	1.43	3 <mark>5 0</mark> .016	59 0.0084	0.0071	0.0071	<mark>0</mark> .0064	0.00745			
Average	1.43	3 <mark>4</mark> 0.017	1-0.0086	0 <mark>.00</mark> 75	0.0071	<mark>0</mark> .0064	0.00745			
Transmission <mark>%</mark>		1.19	0.6	0.52	0.5	0.45	0.52			
	1.43	33 0.013	6 0.0083	0.0078	0.0075	<mark>0</mark> .0067	0.007			
IEVEI	1.43	33 0.013	0.0082	0.0074	0.0072	<mark>0</mark> .0068	0.007			
	1.43	35 0.013	88 0.0081	0.0069	0.0073	0.0066	0.007			
Average	1.43	<mark>34</mark> 0.013	37 0.0082	0.0074	0.0073	0.0067	0.007			
Transmission %		0.96	i 0.57	0.51	0.51	0.47	0.49			

Lampiran-2: Lembar data Pengukuran

Pesawat	Linac Elekta
Detektor	PTW Markus
Suhu	21
Tekanan	1004
Kelembaban	56
Dose Rate	400
Tegangan	+300 V
Phantom	$30 \times 30 \times 10 \ cm^2$

LEMBAR DATA

Energ	gi = 8 <mark>M</mark>	eV	MU = 200 Depth = Permukaan									
4 			All	Meter Rea	ding are i	n Gray (Gy)	i i 1911 - Jan - Mar Mar	E			
Block		Ce	errobend She	et	Т	Teflon Sheet			Pb Sheet			
Posision	Open Filed				K	etebal <mark>an</mark>	(cm)					
		0,5 cm	1 cm	1,5 cm	0,5 cm	1 cm	1,5 cm	0,2 cm	0,5 cm	1 cm		
	3,688	0,1122	0,07034	0,0665	3, 593	2,6 <mark>56</mark>	1,571	0,08301	0,07912	0,05844		
Pengukuran	3,69 <mark>7</mark>	0,1126	0,07086	0,06684	3,604	2,657	1,575	0,08439	0,07924	0,05888		
Ale Ale Libro con antico da Longa da Longa da Longa	3,69 <mark>7</mark>	0,1126	0,0709 <mark>8</mark>	0,06646	3,432	2,661	1,521	0,08483	0,079 76	0,05912		
Rata- rata	3,69 <mark>4</mark>	0,112467	0,0707 <mark>267</mark>	0,0666	3,543	2,658	1, 5 556	0,08407667	<mark>0</mark> ,0793 733	0,05881		

Energ	$\mathbf{i} = 10 \mathbf{N}$	1eV		MU = 2	200	1		Depth = Permukaan					
		C.	A	ll Meter Read	ding are in	n Gray ((Gy)	<u>х</u> .					
Block		Ce	errobend S	heet	T	et	Pb Sheet						
Posision	Open Filed		Ketebalan (cm)										
7		0,5 cm	1 cm	1,5 cm	0,5 cm	1 cm	1,5 cm	0,2 cm	0,5 cm	1 cm			
ing the	3,773	0,1446	0,08728	0,07878	3,813	3,187	2,31	0,121	0,1028	0,07322			
Pengukuran	3,774	0,1416	0,08706	0,07862	3,818	3,193	2,316	0,12123	0,1027	0,07314			
da 1. juli - Juli 1. juli - Juli	3,769	0,1411	0,08716	0,07872	3,817	3,187	2,315	0,12165	0,1025	0,0731			
Rata- rata	3,772	0,142433	0,08716	0,0787067	3,816	3,189	2,3136	0,12129333	0,1026	0,07315			

Energi = 8 MeV					MU = 200				$Depth = Z_{max} (1,7cm)$			
All Meter Reading are in Gray (Gy)												
Block		Ce	rrobend Sh	eet		Teflon Shee	et	Pb Sheet				
Posision	Open Filed			Ketebalan (cm)								
	2 	0,5 cm	1 cm	1,5 cm	0,5 cm	1 cm	1,5 cm	0,2 cm	0,5 cm	1 cm		
Pengukuran	4,135	0,0708	0,0556	0,04692	3,114	0,8821	0,1025	0,07495	0,06228	0,04438		
Tengukurun	4,145	0,07084	0,05596	0,04736	3,126	0,897	0,1026	0,07506	0,0621	0,04448		
	4,144	0,0711	0,05612	0,0474	3,125	0,8928	0,1034	0,07445	0,06268	0,04492		
Rata- rata	4,14 <mark>13</mark>	0,070913	0,055893	0,047226	3,1216	0,890633	0,10283	0,07482	0,062354	0,04459		

Er	ergi <mark>= 1</mark>	0 MeV			4U = 200			$Depth = Z_{max} (2,1 cm)$		cm)
All Meter Reading are in Gray (Gy)										
Block		Ce	rrobend She	et		Teflon <mark>S</mark> l	neet		Pb Sheet	
Posision	Open Filed	1	$\overline{\gamma}$		Ket	ebalan (c	m)			
		0,5 cm	1 cm	1,5cm	0,5 cm	1 cm	1,5 cm	0,2 cm	0,5 cm	1 cm
Dan autorea	4,125	0,08666	0,0624 <mark>2</mark>	0,05414	3,557	1,700	0,3426	0,08 <mark>49</mark> 8	0,07496	0,05618
Pengukuran	4,121	0,08744	0,06216	0,05406	3,557	1,713	0,3421	0,08 <mark>52</mark> 1	0,07538	0,05662
	4,121	0,08754	0,0 <mark>6288</mark>	0,05414	3,554	1,715	0,3454	0,08 <mark>53</mark> 4	0,07554	0,05668
Rata- rata	4,12 <mark>23</mark>	0,0872133	0,0 <mark>624</mark> 86	0,054113	3,556	1,7093	0,343367	0,08517	6 0,07529	0,05649

Lampiran-3 : Hasil perhitungan rata-rata setiap pengukuran

Ener	rgi = 8 MeV SRSI	AS NA Depth = Permukaan			
Lapangan	Cerrobend Sheet	Cerrobend Sheet	Cerrobend Sheet		
Terbuka	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)		
Rata -Rata =	Rata -Rata =	Rata -Rata =	Rata -Rata =		
3.688+3.697+3.697	0.1122+0.1126+0.1126	0.07034+0.07086+0.07098	0.0665+0.06684+0.06646		
3	3 –	3	3		
= 3.694 Gy	0.112467 Gy	= 0.0707267 Gy	= 0.0666 Gy		
	Teflon Sheet	Teflon Sheet	Teflon Sheet		
	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)		
	<u>3.593+3.604+3.432</u> <u>3</u>	2,656+2,657+2,661 3	<u>1,571+1,575+1,521</u> <u>3</u>		
	= 3.543 Gy	= 2.658 Gy	=1.5556 Gy		

Pb Sheet	Pb Sheet	Pb Sheet
(Ketebalan 0.2 cm)	(Ketebalan 0.5 cm)	(Ketebalan 1cm)
0,08301+0,08439+0,08483	0,07912+0,07924+0,07976	0,05844+0,05888+0,0591
3	3	3
= 0.08407667 Gy	= 0.0793733 Gy	= 0.05881 Gy

Energ	ji = 10 MeV	Depth = Permukaan			
Lapangan	Cerrobend Sheet	Cerrobend Sheet	Cerrobend Sheet		
Terbuka	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)		
Rata -Rata =	Rata -Rata =	Rata -Rata =	Rat <mark>a</mark> -Rata =		
3,773+3,774+3, <mark>76</mark>	0,1446+0,1416+0,1411	<mark>0,08728</mark> +0,08706+0,08716	0,07 <mark>87</mark> 8+0,07862 +0,07872		
3	3	3	3		
= 3.772 Gy	= 0.142433 Gy	= 0.08716 Gy	= 0. <mark>0</mark> 787067 Gy		
	Teflon Sheet	Teflon Sheet	Tef <mark>lo</mark> n Sheet		
	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ke <mark>te</mark> balan 1.5 cm)		
	3,813+3,818+3,817	3,1873+3.1933+3,187	2,310+2,316+2,315		
	= 3.816 Gy	= 3.189 Gy	= 2.3136 Gy		
	Pb Sheet	Pb Sheet	Pb Sheet		
	(Ketebalan <mark>0.2</mark> cm)	(Ketebalan 0.5 cm)	(Ke <mark>te</mark> balan 1cm)		
	0,1210+0,121 <mark>23+</mark> 0,12165	0,1 <mark>028+0,1027+0</mark> ,1025	0,07 <mark>32</mark> 2+0,07314+0,0731		
	3	3	3		
	= 0.12129333 Gy	= 0.1026 Gy	= 0.07315 Gy		
	VEDA	510	-		

TSITAS NPT							
Ener	gi = 8 MeV	$Depth = Z_{max} (1,7cm)$					
Lapangan	Cerrobend Sheet	Cerrobend Sheet	Cerrobend Sheet				
Terbuka	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)				
Rata -Rata =	Rata -Rata =	Rata -Rata =	Rata -Rata =				
4,135+4,145+4,144	0,0708+0,07084+0,0711	0,0556 +0,05596+0,05612	0,04692+0,04736 +0,0474				
3	3	3	3				
= 4.1413 Gy	= 0.070913 Gy	= 0.055893 Gy	= 0.047226 Gy				
	Teflon Sheet	Teflon Sheet	Teflon Sheet				
	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)				

3,114+3,126+3,125	0,8821+0,897+0,8928	0,1025+0,1026+0,1034
3	3	3
= 3.1216 Gy	= 0.890633 Gy	= 0.10283 Gy
Pb Sheet	Pb Sheet	Pb Sheet
(Ketebalan 0.2 cm)	(Ketebalan 0.5 cm)	(Ketebalan 1cm)
0,07495+0,07506+0,07445	0,06228+0,0621+0,06268	0,04438+0,04448+0,0449
3	3	3
= 0.07482 Gy	= 0.062354 Gy	= 0.04459 Gy

Energ	vi = 10 MeV	Depth = Z_{max} (2,1 cm)		
Energ			ux (2,1 011)	
Lapangan	Cerrobend Sheet	Cerrobend Sheet	Cerrobend Sheet	
Terbuka	(Ketebalan 0.5 cm)	(Ketebalan 1 cm)	(Ketebalan 1.5 cm)	
Rata -Rata =	Rata -Rata =	Rata -Rata =	Rata -Rata =	
4,125+4,121+4, <mark>12</mark>	0,08666+0,087 <mark>44</mark> +0,08754	0, <mark>06</mark> 242+0,06 <mark>216</mark> +0,06288	0,05 <mark>41</mark> 4+0,05406 +0,05414	
3	3	3	3	
= 4.1223 Gy	= 0.0872133 Gy	= <mark>0.062486 G</mark> y	= 0 <mark>.0</mark> 54113 Gy	
	Teflon Sheet	Teflon Sheet	Tef <mark>lo</mark> n Sheet	
	(Ketebalan 0. <mark>5 cm</mark>)	(Ketebal <mark>an 1</mark> cm)	(Ketebalan 1.5 cm)	
	3,557+3,557+ <mark>3,55</mark> 4	1,700+1,713 <mark>+1,7</mark> 15	0,34 <mark>26</mark> +0,3421+0,3454	
	3	3	3	
	= 3.556 Gy	= 1.7093 Gy	= 0 <mark>.3</mark> 43367 Gy	
	Pb Sheet	Pb Sheet	Pb Sheet	
	(Ketebalan 0.2 cm)	(Ketebalan 0.5 cm)	(Ketebalan 1cm)	
	0,0 <mark>8498+0,</mark> 08521+0,08534	0,07496+0,07538+0,07554	0,05618+0,05662+0,05668	
	3	3	3	
	= 0.085176 Gy	= 0.07529 Gy	= 0.05649 Gy	

Lampiran-4 : Hasil perhitungan Presentase Transmisi

Perhitungan % pada masing- masing material pengukuran pada permukaan *phantom* dan *Z_{max} phantom* dengan energi 8 MeV dan 10 MeV

• Material Cerrobend energi 8 Mev pengukuran pada permukaan *phantom*

Ketebalan 0,5 cm			Ketebalan 1 cm		Ketebalan 1,5 cm			
Dosis 1	tanpa ł	olok	Dosis	tanpa	blok	Dosis	tanpa	blok
individual :	3.694 Gy		individual	: 3.694 Gy		individual	: 3.694 Gy	
$\% = \frac{0.112467}{3.6940}$	^{7 Gy} × 1009	%	$\% = \frac{0.070}{3.6}$	^{7267 Gy} × 1 ^{94 Gy}	00%	$\% = \frac{0.0666}{3.694}$	^{Gy} _{Sy} × 100%	
= 3.04%			= 1.91%			= 1.802%		

Material Teflon energi 8 Mev pengukuran pada permukaan phantom

Ketebalan 0,5 cm	Ketebalan 1 cm	Ketebalan 1,5 cm
Dosis tanpa blo <mark>k</mark> individual	D <mark>osis</mark> tanpa blok individual	Dosis ta <mark>np</mark> a blok individual
: 3.694 Gy	: 3 <mark>.694</mark> Gy	: 3,694 <mark>G</mark> y
$\% = \frac{3.543 \text{ Gy}}{3.694 \text{ Gy}} \times \frac{100\%}{100\%}$	$\% = \frac{2.658 \text{ Gy}}{3.694 \text{ Gy}} \times 100\%$	$\% = \frac{1.5556 \text{ Gy}}{3.694} \times 100\%$
= 95.91%	= 71.95%	= 42.11%

• Material Pb energi 8 Mev pengukuran pada permukaan *phantom*

Ketebalan 0.2 cm	Ketebalan 0.5 cm	Ketebalan 1 cm
Dosis tanpa blok individual	Dosis tanpa blok individual	Dosis tanpa blok individual
: 3.694 Gy	: 3.694 Gy A 5 N	: 3,694 Gy
$\% = \frac{0,08407667 \text{ Gy}}{3,694 \text{ Gy}} \times 100\%$	$\% = \frac{0.0793733 \text{ Gy}}{3.694 \text{ Gy}} \times 100\%$	$\% = \frac{1.59213 \text{Gy}}{3.694 \text{ Gy}} \times 100\%$
= 2.27%	= 2.14 %	= 1.59 %

• Material Cerrobend energi 10 Mev pengukuran pada permukaan *phantom*

Ketebalan 0.5 cm			Ketebalan 1 cm			Ketebalan 1.5 cm		
Dosis	tanpa	blok	Dosis	tanpa	blok	Dosis	tanpa	blok
individual : 3.772 Gy			individual	: 3.772 Gy		individual	: 3.772 Gy	

$\% = \frac{0.142433 \text{ Gy}}{3.772 \text{ Gy}} \times 100\%$	$\% = \frac{0.08716 \text{ Gy}}{3.772 \text{ Gy}} \times 100\%$	$\% = \frac{0.0787067 \text{Gy}}{3.772 \text{Gy}} \times 100\%$
= 3.77 %	= 2.31 %	= 2.08 %

• Material Teflon energi 10 Mev pengukuran pada permukaan *phantom*

Ketebalan 0.5	5 cm	Ketebalan 1 cm		Ketebalan 1.5 cm	
Dosis tar	ipa blok	Dosis tanpa	blok	Dosis tanpa blok individual :	
individual : 3	.772 Gy	individual : 3.772 Gy		3.772 Gy	
$\% = \frac{101.16649}{3.772 \text{ Gy}}$	$\frac{Gy}{V} \times 100\%$	$\% = \frac{84.544008 \text{ Gy}}{3.772 \text{ Gy}} \times$	100%	$\% = \frac{61.3361612 \text{ Gy}}{3.772 \text{ Gy}} \times 100\%$	
= 101.16 %		= 84.54 %		= 61.33 %	

• Material Pb energi 10 Mev pengukuran pada permukaan phantom

Ketebalan 0.2 cm	Ketebalan 0.5 cm	Ketebalan 1 cm
Dosis ta <mark>np</mark> a blok	Dosis tanpa blok	Dosis tanpa blok
individual : 3 <mark>.7</mark> 72 Gy	individual : 3.772 Gy	individ <mark>ua</mark> l : 3.772 Gy
$\% = \frac{0.1212934}{3.772 \text{ Gy}} \times 100\%$	$\% = \frac{0.1026 \text{ Gy}}{3.772 \text{ Gy}} \times 100\%$	$\% = \frac{0.0731533 \text{ Gy}}{3.772 \text{ Gy}} \times 100\%$
= 3.12%	= 2.72 %	= 1.73 %

• Material Cerrobend energi 8 Mev pengukuran pada Z_{max} phantom

Ketebalan 0.5 cm	Ketebalan 1 cm	Ketebalan 1.5 cm
Dosis tanpa blok	Dosis tanpa blok	Dosis tanpa blok
individual : 4.1413 Gy	individual : 4.1413 Gy	individual : 4.1413 Gy
$\% = \frac{0.0709133 \text{ Gy}}{4.1413 \text{ Gy}} \times 100\%$	$\% = \frac{\frac{0.055893\text{Gy}}{4.1413\text{ Gy}} \times 100\%$	$\% = \frac{0.0472267 \text{Gy}}{4.1413 \text{Gy}} \times 100\%$
= 1.71 %	= 1.34 %	= 1.14 %

• Material Teflon energi 8 Mev pengukuran pada Z_{max} phantom

Ketebalan 0.5 cm			Ketebalan 1 cm		Ketebalan 1.5 cm			
Dosis	tanpa	blok	Dosis	tanpa	blok	Dosis	tanpa	blok
individual : 4.1413 Gy			individu	al : 4.1413	Gy	individu	al : 4.1413	Gy

$\% = \frac{3.1216 \text{ Gy}}{4.1413 \text{ Gy}} \times 100\%$	$\% = \frac{0.890633 \text{ Gy}}{4.1413 \text{ Gy}} \times 100\%$	$\% = \frac{0.10283 \text{ Gy}}{4.1413 \text{ Gy}} \times 100\%$
= 75.37 %	= 21.506 %	= 2.483 %

• Material Pb energi 8 Mev pengukuran pada Z_{max} phantom

Ketebalan 0.2	2 cm	Ketebalan 0.5 cm		Ketebalan 1 cm			
Dosis ta	npa blok	Dosis	tanpa	blok	Dosis	tanpa	blok
individual : 4	.1413 Gy	individual : 4.1413 Gy		individual : 4.1413 Gy			
$\% = \frac{0.07482 \text{ Gy}}{4.1413 \text{ Gy}}$	<mark>- ×</mark> 100%	$\% = \frac{1.5056}{4.14}$	4638 Gy 13 Gy ×	100%	$\% = \frac{0.044}{4.14}$	5933 Gy 13 Gy ×	100%
= 1.806 %		= 1.505 %	6		= 1.07 %		

• Material Cerrobend energi 10 Mev pengukuran pada Z_{max} phantom

Ketebalan 0.5 cm	Ketebalan 1 cm	Ketebalan 1.5 cm
Dosis tanpa b <mark>lo</mark> k individual	D <mark>osi</mark> s tanpa blok individual	Dosis t <mark>an</mark> pa blok individual
: 4.1223 Gy	: <mark>4.1223</mark> Gy	: 4.122 <mark>3</mark> Gy
$\% = \frac{0.0872133 \text{ Gy}}{4,1223 \text{ Gy}} \times 100\%$	$\% = \frac{0.0624867 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$	$\% = \frac{0.0541133 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$
= 2.11 %	= 1.51 %	= 1.31 %

• Material Teflon energi 10 Mev pengukuran pada Z_{max} phantom

Ketebalan 0.5 cm	Ketebalan 1 cm	Ketebalan 1.5 cm
Dosis tanpa blok individual	Dosis tanpa blok individual	Dosis tanpa blok individual
: 4.1223 Gy	: 4.1223 Gy	: 4.1223 Gy
$\% = \frac{3.556 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$	$\% = \frac{1.7093 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$	$\% = \frac{0.343367 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$
= 86.26 %	= 41.46 %	= 8.32 %

• Material Pb energi 10 Mev pengukuran pada Z_{max} phantom

	r	r
Ketebalan 0.2 cm	Ketebalan 0.5 cm	Ketebalan 1 cm

Dosis tanpa blok individual	Dosis tanpa blok individual	Dosis tanpa blok individual
: 4.1223 Gy	: 4.1223 Gy	: 4.1223 Gy
$\% = \frac{0.085176667Gy}{4.1223 \text{ Gy}} \times 100\%$	$\% = \frac{0.0752933 \text{ Gy}}{4.1223 \text{ Gy}} \times 100\%$	$\% = \frac{0.05649 \text{Gy}}{4.1223 \text{Gy}} \times 100\%$
= 2.06 %	= 1.82 %	= 1.37 %

Lampiran-5 : Data sekunder Pengukuran pada z_{max} mengunakan water phantom dengan energi 8 dan 10 MeV

	Worksheet for the determination of the absorbed dose to water							
			in an ele	ectron-b	eam			
	User: RSPAD GS	6			Date:		24-Jun-22	2
					(D			
т. к	adiation treatment u	Init and ret		onations	s for $D_{w,Q}$	determinatio	on	
	Accelerator:	elekta Pred	cise		Nominal ene		10.000	Me\/
	Nominal doco rato:	911 1303	400 0 M	11 J min ⁻¹	Moosured R	, yy.	4.050	
	Reference phantom:		400,0		obtained from	.50. m	anization	dose curves
	Reference field size:		10x10 c	m x cm	Reference S	SD:	100	cm
	Beam quality, Q (R 50, w	4,050	g cm ⁻² R	ef. depth	$z_{ref,w} = 0.6$	R ₅₀ - 0.1:	2,3	g cm ⁻²
2. lo	nization chamber ar	nd electror	neter					
	Ion. chamber model	Markus			Serial No.:	0.4000	-2 ₪	cyl
	Chamber wall / window	material:	Poly	ethylene	thickness:	0,1020	g cm -	
	Phantom window	material:			thickness:		g cm ⁻²	
		materiai.			thickness.		gom	
	Abs. dose-to <mark>-w</mark> ater ca	libration fa	ctor ^a N	$D_{D,w,Q_0} =$		0,561 <mark>2</mark>	Gy/nC	Gy/rdg
	Calibration quality Q ₀ :	✓ Co-60 e	lectron beam	Calib	ration depth:	5,0	g cm ⁻²	
	If Q ₀ is electron beam,	give R 50, w:	g	cm ⁻²				
	Reference conditions fo	or calibration						-
	<i>P</i> ₀ : 101,3	kPa	<i>T</i> ₀ :	20,0	°C	Rel. humidity:	5 <mark>0</mark>	%
	Pol. potential V ₁ :	400	V Calib	polarity:	I +ve □ -	ve 🔽 corre	cted fo <mark>r pola</mark>	rity effect
			Use	r polarity:	🗹 +ve 🔲 -	ve		
		_		DATAN	Dette	40.01	(- k 000)	
	Electrometer model:		PTW/	Tandom	Serial no :	13 UK	toper 200	,
	Calib. separately from c	chamber:	🗌 ves		Range settir	na:		
	If yes Calibration la	boratory:			Date:	.9.		
			/ 1					
3. P	hantom							_
	Water phantom	window mat	erial:	•		thickness:		g cm⁻²
	Plastic phantom	phantom ma	aterial:		> ; /	density:		g cm ⁻³
	de <mark>pth</mark> scaling	g factor c _{p/} :		reference	e depth z _{rei}	$f_{f,pl} = Z_{ref} / C_{pl}$		g cm ⁻²
	fluence sca	aling factor:				$h_{pl} =$		
4 D	enimetry reading b a		ion for inf	luonoo	u ontition	~		
4. D	Uncorrected decimator			iuence (uantities	4.02	I nC	🗌 rda
	Uncorrected dosimeter	reading at v	1 and user p	polarity:	~ .0	1,93		
	Corresponding accelera	ator monitor t				0.0102	IVIU	🗌 rda/MU
(i)		kPa	T.	22.0	°C	Rel humidity:	62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(1)		Nº G	_		(273.2	$+T$) P_{\circ}	-	/0
				k_{TP}	$=\frac{(272.2)}{(272.2)}$	$\frac{T}{T}$	1,0101	
					(273.2	$+I_0$) P		
(ii)	Electrometer calibration	n factor	k _{elec} =		nC/rdg	dimens	ionless	
. ,								
(iii)	Polarity correction ^c	rdg at + V_1 :	$M_{+} =$	1,919		rdg at -V1:	M- =	= <mark>1,938</mark>
					1	$A \mid + \mid M \mid$		
					$k_{pol} = -$	$\frac{2+1}{2M} = -$	1,0050	
						2101		
(iv)	Recombination correction	on (two-volta	ge method)					
	Polarizing voltages:	V ₁	(normal) =	300	V N	V_2 (reduced) =	100	V
	Readings at each V:		$M_1 =$	1,919		$M_2 =$	1,91	
	V	/oltage ratio	$V_1 / V_2 =$	3,0000	Read. ra	tio $M_1 / M_2 =$	1,0047	
	Beam type: 🗹 pulse	d 🗌 pulsed	d-scanned					
		$a_0 =$	1,1980	a 1 =	-0,8753	a ₂ =	0,6773	
			-		(M_{i})	$(M_{I})^{2}$	4 0000	d
			k.	$a_{0} = a_{0} + a_{0}$	$u_{I}\left(\frac{1}{M_{2}}\right) + c$	$a_2\left(\frac{1}{M_2}\right) =$	1,0023	
					2)	21		

Corrected dosimeter reading at the voltage V₁:

$$M_{Q} = M_{1} h_{\mu l} k_{\mu r} k_{elec} k_{\mu o l} k_{s} = 1,9635E-02 \quad \square \ n C/MU \quad \square \ rdg/MU$$
5. Absorbed dose to water at the reference depth, z_{ref}
Beam quality correction factor for user quality C:

$$M_{Q,0} = 0,910$$

$$M_{Q,0} = 0,9100$$

$$M_{Q,0} = 0,91000$$

$$M_{Q,0} = 0$$

- ^a Note that if Q_0 is ⁶⁰Co, N_{D,w,Q_0} is denoted $N_{D,w}$ ^b All readings should be checked for leakage and corrected if necessary ^c *M* in the denominator of k_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of *M* (or M_{+} or M_{-}) to the reading of an external monitor, M_{em} . ^d Check that $k_{-} = 1 \approx \frac{M_{\perp}/M_{2} 1}{M_{-}}$

.

Check that
$$k_s - 1 \approx \frac{M_1 / M_2 - 1}{V_1 / V_2 - 1}$$

$$k_s - l = 0,002$$

$$\frac{M_1 / M_2 - 1}{V_1 / V_2 - 1} = 0,002$$

in an electron-beam User: RSPAD GS Date: 24-Jun-22 1. Radiation treatment unit and reference conditions for $D_{w,Q}$ determination Accelerator: elekta Precise s/n 1503 Nominal energy: 8.000 MeV g cm⁻² MU min⁻¹ Nominal dose rate: 400,0 Measured R₅₀ : 3,234 ionization 🗹 dose curves ✓ water Reference phantom: plastic obtained from Reference field size: 10x10 cm x cm Reference SSD: 100 cm Beam quality, Q (R 50, w g cm⁻² Ref. depth $z_{ref, w} = 0.6 R_{50} - 0.1$: g cm⁻² 3.234 1.8 2. Ionization chamber and electrometer lon. chamber model Markus Serial No.: \mathbf{T} 🗹 pp 🗌 cyl Chamber wall / window thickness: material: Polyethylene 0,1020 g cm⁻² g cm⁻² Waterproof sleeve material: thickness: g cm⁻² Phantom window material: thickness: Abs. dose-to-water calibration factor a $N_{D,w,Q_{\theta}} =$ 0,5612 Gy/nC Gy/rdg Calibration quality Q₀: Co-60 electron beam Calibration depth: 5,0 g cm⁻² If Q_0 is electron beam, give $R_{50,w}$: g cm⁻² Reference conditions for calibration 20,0 *P*₀: **101,3** kPa °C 50 Rel. humidity: % *T*₀: Calib. polarity: ♥ +ve User polarity: ♥ +ve Pol. potential V_1 : 400 corrected for polarity effect -ve -ve BATAN Date: 13 Oktober 2009 Calibration laboratory: Electrometer model: PTW Tandem Serial no. Range setting: Calib. separately from chamber: 🔄 yes 🛛 🗹 no If yes Calibration laboratory: Date: 3. Phantom g cm⁻² Water phantom window material: thickness: g cm⁻³ Plastic phantom phantom material: density: g cm⁻² depth scaling factor c_{pl} : Z ref,pl = Z ref / C pl reference depth fluence scaling factor : $h_{pl} =$ 4. Dosimetry reading ^b and correction for influence quantities 🗹 nC 🗌 rdg Uncorrected dosimeter reading at V₁ and user polarity: 1,91 MU Corresponding accelerator monitor units: 100 Ratio of dosimeter reading and monitor units: 0,0191 🗹 nC/MU 🔲 rdg/MU $M_{1} =$ °C Rel. humidity: (i) P٠ 101,0 kPa <mark>62</mark>% $k_{TP} = \frac{(273.2 + T) P_0}{(273.2 + T_0) P}$ 1,0101 nC/rdg dimensionless (ii) Electrometer calibration factor (iii) Polarity correction ^c rdg at $+V_1$ rdg at $-V_1$: $M_{-} = 1,927$ $M_{\cdot} =$ 1.91 $k_{pol} = \frac{|M_+| + |M_-|}{2M} =$ 1,0045 Recombination correction (two-voltage method) (iv) Polarizing voltages: V_1 (normal) = 300 V_2 (reduced) = 100 V Readings at each V: M₁ = 1,91 $M_2 =$ 1,899 Voltage ratio $V_1 / V_2 =$ 1,0058 3,0000 Read. ratio $M_1 / M_2 =$ ✓ pulsed _____ pulsed-scanned Beam type: $a_0 = 1,1980$ -0,8753 0,6773 a₁ = $a_2 =$ $k_s = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2 =$ **1,0028** ^d

Worksheet for the determination of the absorbed dose to water

resty	/			
ORIGINA	LITY REPORT			
SIMILA	5% RITY INDEX	14% INTERNET SOURCES	3% PUBLICATIONS	6% STUDENT PAPERS
PRIMARY	SOURCES			
1	scholar.u	nand.ac.id		4%
2	Submitte Student Paper	d to Universitas	Nasional	2%
3	media.ne	l <mark>it</mark> i.com		1%
4	docplaye	r.info		1 %
5	WWW.SCIII	t <mark>.net</mark>		1 %
6	fisika.fsm	n.undip.ac.idsır	AS NASIO	1 %
7	repositor	y.lib.cuhk.edu.h	ık	1 %
8	myresear	chjournals.com	ו	<1 %
9	link.spring	ger.com		<1 %

10	www.slideshare.net	<1 %
11	123dok.com Internet Source	<1%
12	repository.unas.ac.id	<1%
13	eprints.ums.ac.id	<1%
14	repository.usd.ac.id	<1%
15	Arwa Al-aghbari, Mohamed Ismail El gohary. "Effect of block tray on Build-up dose in γ- ray radiotherapy", Egyptian Journal of Biomedical Engineering and Biophysics, 2022 Publication	<1 %
16	apps.dtic.mil	<1%
17	repository.unej.ac.id	<1%
18	repository.umsu.ac.id	<1%
19	www.puskasbaznas.com	<1%

20 Muhammad Zulhasyikin Abdul Penyu, Nurul Sabihah Zakaria, Yusnira Yusoff, Afdhal Nuk Shabandi. "Effect of cerrobend thickness on electron transmission in megaelectronvolt (MeV) produced by clinical linear accelerator", Materials Today: Proceedings, 2023 Publication

<1%

21	id.123dok.com	<1%
22	repository.upi.edu	<1%
23	Submitted to Universitas Jember Student Paper	<1 %
24	es.scribd.com Internet Source	<1 %
25	repositori.uma.ac.id	<1 %
26	repository.unhas.ac.id	<1 %
27	eprints.umk.ac.id	<1 %
28	eprints.undip.ac.id	<1%
29	repository.its.ac.id	<1%

30	text-id.123dok.com	<1%
31	www.scribd.com	<1%
32	ar.scribd.com Internet Source	<1%
33	idoc.pub Internet Source	<1%
34	lib.ui.ac.id Internet Source	<1%
35	repository.uniba.ac.id	<1%
Excluc Excluc	de quotes Off Exclude matches Off de bibliography Off CRSITAS NASION	