BAB II

TINJAUAN PUSTAKA

2.1 Makanan Sehat

Makanan yang sehat merupakan makanan yang mengandung jumlah zat gizi yang tepat dan seimbang, serta tidak mengandung bahan-bahan yang berpotensi merugikan atau menggangu kesehatan (Nuraini, 2007). Makanan yang sehat memiliki nutrisi yang kaya dan mengandung makronutrien seperti karbohidrat, protein, dan lemak berguna untuk tubuh dan mikronutrien berupa vitamin dan mineral. Namun, makanan sehat sebaiknya berkalori cukup dan tidak melampaui keperluan tubuh. Makanan sehat bertujuan menjaga kenyamanan tubuh, memberikan energi cukup untuk aktivitas sehari-hari, serta mencegah penyakit. Dengan makanan bernutrisi seimbang, tidak perlu diet untuk mengatur berat badan karena tubuh akan mencapai berat badan ideal, penting untuk mempelajari jenis makanan sehat dan mengonsumsinya dengan tepat untuk mencapai tujuan tersebut (Oetoro, 2012). Makanan sehat tidak hanya harus enak, tetapi juga harus bersih dan kaya nutrisi. Karena makanan sehat adalah makanan yang enak, higienis dan bergizi sehingga makanan tersebut menjadi daya tarik untuk dikonsumsi (Bermain et al., 2014).

2.2 Algoritma Dijkstra

Algoritma Dijkstra merupakan suatu algoritma yang digunakan untuk menemukan jalur terpendek atau jarak terpendek dari sebuah simpul atau node dalam sebuah grafik dengan bobot yang tidak negatif. Nama algoritma ini selaras dengan penemunya yaitu ilmuwan komputer asal Belanda, Edsger Wybe Dijkstra yang pertama kali mengembangkan algoritma ini pada tahun 1956. Algoritma ini termasuk dalam pembahasan teori graf pada matematika diskrit yang terkait dengan graf berbobot dan jalur terpendek (shortest path) (Sely Wita et al., 2019).

Algoritma Dijkstra memiliki sifat yang sederhana dan mudah dipahami (*straightforward*), artinya algoritma ini langsung dan jelas dalam penggunaannya. Nama algoritma ini berasal dari kata menurut literal berarti keserakahan atau kerakusan, tetapi bukan memiliki konotasi negatif (Irsyada & Audytra, 2021). Pada dasarnya, algoritma ini akan memilih jalan yang menghubungkan satu node menuju node lain dengan bobot yang paling rendah. Setelah itu jalan yang dipilih akan dihapus dari pilihan selanjutnya agar tidak menghasilkan rute yang bolak-balik antara dua titik yang sama (Musabbikhah, 2022).

2.3 Algoritma A Star

Satu diantara algoritma yang diaplikasikan guna menemukan jarak terdekat adalah algoritma A-Star yang efektif mencari rute terdekat dari titik permulaan hingga tujuan akhir. Algoritma A-Star menerapkan heuristik untuk faktor penting dalam proses pengambilan keputusan.(Mukhlis et al, 2020). Algoritma A-Star menggunakan metode pencarian best-first (BFS) yang menghubungkan biaya dengan setiap simpul menggunakan rumus f(n) = g(n) + h(n) dimana g(n) adalah biaya dari jalur titik asal ke simpul n, lalu h(n) merupakan perkiraan heuristik atau biaya dari simpul n ke tujuan. Total biaya terendah yang diantisipasi dari setiap rute melalui node n ke titik tujuan diwakili oleh f(n), sebagai hasilnya. Dengan kata lain, jarak garis lurus dari simpul n ke simpul tujuan berfungsi sebagai perkiraan heuristikm sedangkan biaya menggambarkan jarak yang telah dilalui. Prioritas meninggkat saat nilai f(n) menurun (Sulistiani & Wibowo, 2018). Secara matematika, nilai evaluasi heuristik sebuah titik dalam algorotima A Star diberikan oleh (Taufiq & Suyitno, 2019):

$$f(n) = g(n) + h(n)$$

Penjelasannya sebagai berikut:

- f(n) = notasi tersebut men<mark>gga</mark>mbarkan solusi dengan biaya estimasi terendah untuk mencapai tujuan dari simpul n.
- g(n) = biaya perjalanan dari simpul awal ke simpul n.
- h(n) = estimasi biaya dari simpul n hingga simpul akhir.

Dalam perhitungan heuristik dapat menggunakan jarak Euclidian. Jarak Euclidian adalah jarak garis lurus dari setiap titik ke titik tujuan yang menghasilkan nilai h(n) untuk setiap titik. Data ini dapat diperoleh dengan bantuan aplikasi Google Maps menggunakan rumus :

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Keterangan:

- d : Jarak Euclidian
- *x* : Latitude (letak titik pada kordinat x)
- y : Longitude (letak titik pada kordinat y)

Menurut format longitude dan latitude yang digunakan, hasil perhitungan jarak masih dalam satuan derajat desimal. Untuk mengimbanginya, kalikan dengan 111.319 kilometer, yang sebanding dengan satu derajat bumi (Taufiq & Suyitno, 2019).

2.4 Leaflet

LeafletJS adalah sebuah pustaka JavaScript open source yang dapat menyederhanakan pembuatan peta untuk web. Sebagai teknologi open source, ini berarti kode sumbernya dapat diakses dan prinsip kerjanya dapat dipelajari oleh semua pengguna serta siapa pun dapat berkontribusi pada proyek ini dengan meningkatkan kode. Melalui file JavaScript, pustaka ini menyediakan akses ke berbagai metode yang memungkinkan penampilan peta di situs web. Teknologi ini dapat digunakan baik pada browser desktop maupun browser seluler sehingga memungkinkan pengguna untuk berbagai peta dari mana saja (Abdillah et al., 2021).

Leaflet memiliki tujuan untuk memberikan pengalaman pengguna yang mudah digunakan dan fokus pada kinerja serta kegunaan yang optimal. Leaflet didesain dengan kemampuan untuk memperluas fungsionalitasnya melalui penggunaan plugin. Leaflet memiliki API yang sangat baik dan dokumentasinya komprehensif, sehingga pengguna dapat mengimplementasikannya dengan mudah dalam berbagai situasi. Beberapa perusahaan terkenal yang menggunakan Leaflet termasuk Flickr, Foursquare, Craigslist, Data.gov, IGN, Wikimedia, OSM, Meetup, WSJ, Mapbox, Cloudmade, CartoDB, dan GIS Cloud (Tanjaya et al., 2016).

2.5 Python

Python adalah bahasa high-level pemrograman yang didesain sederhana, elegan, dan mudah dipahami. Guido van Rossum mendirikannya di Belanda pada tahun 1990. Python memiliki sintaksis yang bersahaja dan mudah dibaca, yang memudahkan pengembang dalam menulis dan memelihara kode.

Berikut keunggulan Python menurut (Saragih, 2018):

• Python ramah pengguna

Bahasa pemrograman tingkat tinggi yang lebih mirip bahasa manusia dibanding mesin bisa disebut Python. Python tidak seperti C++ karena tidak menuntut struktur fundamental yang kompleks seperti menggabungkan sistem sebelum membangun program. Python menggunakan terminologi seperti cetak, inpu, dan kata lainnya yang umum digunakan dalam bahasa Inggris untuk perintahnya.

• Kemampuan dan kompatibilitas Tinggi

Python mampu mengembangkan aplikasi, dari yang sederhana hingga kompleks, dan didukung pemrograman GUI (pemrograman berbasis grafis). Keuntungan lainnya adalah alokasi memori yang fleksibel.

Mendukung OOP

Python mendukung Object-Oriented programming (OOP), yang mempermudah programmer memecahkan masalah dengan menggunakan pendekatan berbasis objek yang relevan dengan keseharian.

• Platform Independent

Platform independent berarti program dapat berjalan di berbagai sistem operasi selama tersedia platform Python (Interpreter Python) di sistem operasi tersebut.

• Open Source

Python adalah bahasa pemrograman yang tersedia secara gratis dan memungkinkan pengguna untuk mengembangkannya baik secara individu maupun dalam tim.

Python semakin populer di kalangan mahasiswa, terutama di kampus yang berfokus pada bidang IT, mahasiswa mempelajarinya untuk menyelesaikan tugas kuliah, tugas akhir, dan penelitian (Romzi & Kurniawan, 2020). Selain itu, Python juga mendapatkan pengakuan di industri teknologi dengan digunakan oleh perusahaan-perusahaan besar seperti Facebook, Spotify, Netflix, dan banyak lagi. Keunggulan Python dalam produktivitas, fleksibilitas, dan kemudahan pengembangan membuatnya menjadi pilihan populer dalam pengembangan aplikasi skala besar.

2.6 MySQL

Sebuah Sistem Manajemen Database Relasional (RDBMS) yang disebut MySQL ditawarkan tanpa biaya dibawah GPL (General Public License). Dengan demikian, siapa pun dapat menggunakan MySQL tanpa batasan, tetapi mereka tidak diizinkan untuk membuat produk turunan yang bersumber tertutup atau untuk dijual (Sophian, 2014). MySQL dipilih secara luas untuk pengembangan web dan aplikasi berbasis web karena kemampuannya dalam mengolah jutaan permintaan dan ribuan transaksi secara bersamaan (Sidharta, 2020).

2.7 Penelitian Terdahulu

Tabel 2.1 Jurnal Penelitian Terdahulu

	Perb	andingan Jurnal I	Penelitian Terdahulu
No	Sumber	Metode	Hasil Penelitian
1.	(Syepanda et	• Dijkstra	Penelitian ini mengembangkan
	al., 2021)		aplikasi berbasis android dengan
			Google Maps API dan Location
			Based Service (LBS) sebagai
			penyedia informasi posisi <mark>ge</mark> ografis
			tempat wisata kuliner dan juga
			mengimplementasikan algoritma
			Dijkstra sebagai penentu rute
			terpendek lokasi wisata kuliner yang
			dituju ole <mark>h p</mark> ara wisatawan di Kota
			Tangerang Selatan.
2.	(Reza Pahlevi	• Dijks <mark>tra</mark>	Penelitian ini menciptakan aplikasi
	& Titi		pencarian l <mark>oka</mark> si wisata kuliner
	Komalasari,		berbasis an <mark>droi</mark> d di Pasar <mark>M</mark> inggu,
	2022)	6	Jakarta <mark>Sel</mark> atan. Aplik <mark>asi</mark> ini
	05	GNIVERS	menggunakan algoritma Dijkstra
		ERS	untuk mencari trek terpendek dan
			tercepat antara lokasi awal menuju
			lokasi wisata kuliner yang dituju.

No	Sumber	Metode	Hasil Penelitian
3.	(Panca	• Dijkstra	Penelitian ini bertujuan untuk
	Juniawan &		memfasilitasi wisatawan dalam
	Yuny Sylfania,		menentukan rute terpendek dari satu
	2020)		tempat wisata ke tempat wisata lain di
			kota Toboali. Penelitian ini
			menggunakan algoritma Dijkstra
			pada sistem berbasis web untuk
	100		memberikan informasi yang mudah
			diakses bagi siapa saja. Dalam kasus
			perhitungan dari titik awal ke Pantai
			Batu Kapur, algoritma Dijkstra
			menghasilkan bobot total jalur
			sebesar 15,1 (1.510 m).
4.	(Barus &	Dijkstra	Penelitian ini menggunakan aplikasi
	William, 202 <mark>2</mark>)		web berbasis SIG dan API Google
			Maps untuk memetakan dan
			merekomend <mark>asik</mark> an lokasi rumah
			makan vegetarian terdekat. Metode
			yang digunakan menggabungkan
		NIVERS	algoritma Dijkstra dan Haversine.
		ERS	Hasil pengujian menunjukkan
			keberhasilan aplikasi SIG dalam
			membantu pengguna menemukan
			lokasi rumah makan vegetarian di
			kota Medan secara cepat,efisien dan
			akurat dengan tingkat akurasi 90 %.

No	Sumber		Metode	Hasil Penelitian
5.	(Wijaya, 202	3)	Dijkstra	Penelitian ini menggunakan
				algoritma Dijkstra untuk membantu
				mencari rute terpendek ke lokasi
				SPBU di Bandar Lampung dengan
				petunjuk lokasi dari Google Maps
				API. Hasil analisis menggunakan
				perangkat lunak ISO 9126
				menunjukkan bahwa kriteria secara
		П		keseluruhan dinilai baik sebesar
				82,1%. Kemudian untuk aspek
				Efisiensi dinilai sebesar 84,8%, aspek
				fungsi 83 %, dan aspek kegunaan
				sebesar 82 %.
6.	(Hermawan	&	• A-Star	Penelitian ini menggunakan
	Tiwa, 2020)		7 //	algoritma A-Star untuk membantu
				pencarian rute terpendek dalam
				mencapai lokasi tujuan yaitu tempat
				kuliner yan <mark>g ad</mark> a di Kota T <mark>an</mark> gerang.
			6	Dengan hasil kuesioner persentase
		d	WIVERS	untuk mencari tempat kuliner di Kota
			ERS	Tangerang yaitu menyatakan
				persetujuan 80,85% sangat puas.

No	Sumber	Metode	Hasil Penelitian
7.	(Saputro,	• A-Star	Dalam penelitian ini, algoritma A-
	2021)		Star diterapkan dengan Sistem
			Informasi Geografis berbasis Web
			yang menampilkan lokasi rute
			terpendek dari lokasi titik awal
			menuju titik tujuan terkecil yang ada
			pada sentra produk mebel di
			Kabupaten Jepara
			7_
			A .
8.	(Larno & Astri,	A-Star	Penelitian ini membuat sebuah sistem
0.	(Larno & Astri, 2020)	• A-Star	informasi geografis dengan
	2020)	GNIVERS	menggunakan algoritma A-Star
			dengan tujuan mendapatkan
			informasi penentu jarak terdekat titik
			shelter evakuasi tsunami di kawasan
			Purus kota Padang.
		ERS	TAS NAS

No	Sumber	Metode	Hasil Penelitian
9.	(Idayat &	• A-Star	Dalam penelitian ini, algoritma A-
	Handayani,		Star diimplementasikan karena dapat
	2022)		menyelesaikan permasalahan
			pencarian rute terpendek untuk
			mengunjungi tempat Mall Lippo
			Cikarang berbasis web dan
			disimpulkan ada 21 rute terpendek
			dari terminal bekasi menuju ke Mall
			Lippo Cikarang.
10.	(Tambun et al.,	• A-Star	Dal <mark>am penelit</mark> ian ini diajuk <mark>an</mark> sebuah
	2022)		sistem informasi geografis berbasis
			web yang memanfaatkan algoritma
			A-Star sebag <mark>ai s</mark> umber informasi dan
			referensi bagi orang tua/wali murid
		6	dalam mencari jarak dan memilih rute
		NIVERS	terdekat untuk pemetaan sekolah
		-48	dasar di wilayah Mustikajaya.