Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor


  • Ismia Iwandini Universitas Nasional, Jakarta, Indonesia
  • Agung Triayudi * Mail Universitas Nasional, Jakarta, Indonesia
  • Gatot Soepriyono Universitas Nasional, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Twitter; Streamlit; Naive Bayes; K-Nearest Neighbor

Abstract

Social media used in communicating that is very popular in Indonesia. One of the most popular is Twitter. Twitter is a social media site where people can share information publicly. This information can be processed to make sentiment analysis. This research attempts to create a system that can detect positive or negative sentiments in public information. The method used for this sentiment classification is the comparison method of Naive Bayes Classifier and K-Nearest Neighbor Classifier using TF-IDF weighting. The input to this system is in the form of tweet data for Transjakarta, while the output of this system is in the form of visualization of positive and negative sentiment data using Streamlit which is a library from python. Based on testing the accuracy of the Naive Bayes approach for sentiment analysis of Twitter data related to the use of Transjakarta transportation is 61.1%, and the accuracy of the K-Nearest Neighbor method is 75.7%. For the two methods used in determining the level of accuracy, it can be concluded that the K-nearest-neighbor method produces better accuracy.

Downloads

Download data is not yet available.

References

N. Tri Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line,” J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.

C. Aksan, B. Pramono, and A. M. Sajiah, “Analisis Sentimen Pembangunan Mass Rapid Transit (Mrt) Jakarta Pada Twitter Menggunakan Metode Improved K-Nearest Neighbor,” semanTIK, vol. 8, no. 1, p. 53, 2022, doi: 10.55679/semantik.v8i1.24653.

Z. P. Putra and A. Nugroho, “Pebandingan Performa Naïve Bayes dan KNN pada Klasifikasi Teks Sentimen Jasa Ekspedisi,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 3, no. 1, p. 2022, 2018.

R. Safitri, N. Alfira, D. Tamitiadini, W. W. A. Dewi, and N. Febriani, Analisis Sentimen : Metode Alternatif Penelitian Big Data. Universitas Brawijaya Press, 2021.

B. Brahimi, M. Touahria, and A. Tari, “Improving sentiment analysis in Arabic: A combined approach,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1242–1250, 2021, doi: 10.1016/j.jksuci.2019.07.011.

D. Ramadhan and E. B. Setiawan, “Analisis Sentimen Program Acara di SCTV pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine,” e-Proceeding Eng., vol. 6, no. 2, pp. 9736–9743, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

D. Ikasari, Y. Fajarwati, and Widiastuti, “Analisis Sentimen Dan Klasifikasi Tweets Berbahasa Indonesia Terhadap Transportasi Umum Mrt Jakarta Menggunakan Naïve Bayes Classifier,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 64–75, 2020, doi: 10.35760/ik.2020.v25i1.2427.

Azhar, S. U. Masruroh, L. K. Wardhani, and Okfalisa, “Perbandingan Kinerja Algoritma Naive Bayes Dan K-Nn Pendekatan Lexicon Pada Analisis Sentimen Di Media,” Pros. Semin. Nas. Fis. Univ. Riau IV, no. September, pp. 978–979, 2019.

A. Y. Permana and H. Noviyani, “Komparasi Algoritma Naïve Bayes Dan K-Nearest Neighbor Dalam Melihat Analisis Sentimen Terhadap Vaksinasi Covid-19,” Pros. SAINTEK, vol. 1, no. 1, pp. 128–134, 2022.

A. P. Wibowo, W. Darmawan, and N. Amalia, “Komparasi Metode Naïve Bayes Dan K-Nearest Neighbor Terhadap Analisis Sentimen Pengguna Aplikasi Pedulilindungi,” IC-Tech, vol. 17, no. 1, pp. 18–23, 2022, doi: 10.47775/ictech.v17i1.234.

E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,” Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 94, 2021, doi: 10.22441/format.2021.v10.i1.009.

S. Rahayu, M. Z. Yumarlin, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.

B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 1, pp. 13–21, 2021, doi: 10.30813/jbase.v4i1.2729.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” J. Ris. Komput., vol. 8, no. 6, pp. 219–225, 2021, doi: 10.30865/jurikom.v8i6.3655.

D. A. Pratiwi, R. M. Awangga, and M. Y. H. Setyawan, SELEKSI CALON KELULUSAN TEPAT WAKTU MAHASISWA TEKNIK INFORMATIKA MENGGUNAKAN METODE NAÏVE BAYES. Kreatif, 2020.

A. Salam, J. Zeniarja, and R. S. U. Khasanah, “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia),” Pros. SINTAK, pp. 480–486, 2018.

M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020, doi: 10.33480/inti.v15i1.1347.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor

Dimensions Badge
Article History
Submitted: 2023-01-16
Published: 2023-01-29
Abstract View: 374 times
PDF Download: 429 times
How to Cite
Iwandini, I., Triayudi, A., & Soepriyono, G. (2023). Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor. Journal of Information System Research (JOSH), 4(2), 543-550. https://doi.org/10.47065/josh.v4i2.2937
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>