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Who shall I say is calling? Validation of a caller recognition 
procedure in Bornean flanged male orangutan (Pongo 
pygmaeus wurmbii) long calls

Brigitte Spillmanna  , Carel P. van Schaika  , Tatang M. Setiab   and  
Seyed Omid Sadjadic 
aAnthropological Institute and Museum, University of Zurich, Zurich, Switzerland; bFakultas Biologi, Universitas 
Nasional, Jakarta, Indonesia; cIBM Research, Yorktown Heights, NY, USA

ABSTRACT
Acoustic individual discrimination has been demonstrated for a 
wide range of animal taxa. However, there has been far less scientific 
effort to demonstrate the effectiveness of automatic individual 
identification, which could greatly facilitate research, especially when 
data are collected via an acoustic localization system (ALS). In this 
study, we examine the accuracy of acoustic caller recognition in long 
calls (LCs) emitted by Bornean male orangutans (Pongo pygmaeus 
wurmbii) derived from two data-sets: the first consists of high-
quality recordings taken during individual focal follows (N = 224 LCs 
by 14 males) and the second consists of LC recordings with variable 
microphone-caller distances stemming from ALS (N  =  123 LCs by 
10 males). The LC is a long-distance vocalization. We therefore expect 
that even the low-quality test-set should yield caller recognition 
results significantly better than by chance. Automatic individual 
identification was accomplished using software originally developed 
for human speaker recognition (i.e. the MSR identity toolbox). 
We obtained a 93.3% correct identification rate with high-quality 
recordings, and 72.23% with recordings stemming from the ALS 
with variable microphone-caller distances (20–420 m). These results 
show that automatic individual identification is possible even though 
the accuracy declines compared with the results of high-quality 
recordings due to severe signal degradations (e.g. sound attenuation, 
environmental noise contamination, and echo interference) with 
increasing distance. We therefore suggest that acoustic individual 
identification with speaker recognition software can be a valuable 
tool to apply to data obtained through an ALS, thereby facilitating 
field research on vocal communication.

Introduction

Acoustic individual recognition can be a very useful tool in studies using passive acoustic 
monitoring (PAM) for applications such as censuses or acoustic localization systems (ALSs) 
for tracking individuals. The presence of individually distinctive acoustic characteristics in 
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calls or songs has been demonstrated for a wide range of animal taxa, from anurans (Bee  
et al. 2001) and birds (Ehnes and Foote 2015) to mammals (Townsend et al. 2014), including 
non-human primates (Wich et al. 2003). These differences are used for individual recogni-
tion in a wide range of animal taxa and modalities, as indicated by playback experiments 
(Cheney and Seyfarth 1982; Rendall et al. 1996), stressing the role of individual recognition 
in moulding social behaviour (Tibbetts and Dale 2007). It might therefore be beneficial for 
studies using PAM to extract caller identities in order to address biologically meaningful 
research questions about the social behaviour of the study species, such as territoriality, 
aggressive competition, mate attraction, etc. Nevertheless, although most of the studies 
addressing vocal individuality show that it is possible to discriminate among individuals, 
it has turned out to be quite challenging to achieve reliable identification of individuals.

Two classes of feature extraction approaches are in use for individual recognition: statis-
tical and non-statistical (Cheng et al. 2010). The former, commonly used for animal calls, 
relies on measurements of the acoustic call structure from waveform or spectrographic 
representations of recorded calls (Galeotti and Sacchi 2001; Peake and McGregor 2001; 
Gilbert et al. 2002; Kirschel et al. 2009; Xia et al. 2012). The latter class, which is commonly 
adopted in human speaker recognition systems, includes linear prediction-based cepstral 
coefficients and mel-frequency cepstral coefficients (MFCCs). In the MFCC feature extrac-
tion procedure (see Figure 1), on which we focus here, acoustic waveforms are transformed 
into compact feature vectors on a frame-by-frame basis taking into account an approximate 
model of human’s auditory perception. This auditory perception model is reflected in the 
mel-frequency scale (Davis and Mermelstein 1980). An example of the auditory-inspired 
mel-scale filterbank with 27 channels is provided in Figure 2. This cepstral representation 
captures the vocal tract resonances, and is based on the source-filter model of human 
speech production, which is also used to describe the vocal production system in many 
animal species (Fitch 2006; Taylor and Reby 2010). Compared with MFCC extraction, 
manual acoustic feature extraction is time-consuming and influenced by the researcher’s 
intuition-based decisions on which parameters to extract. In contrast, MFCC extraction is 
fully automated, repeatable, and standardized (Mielke and Zuberbühler 2013).

Figure 1. Schematic block diagram of the MFCC front-end component of speaker-recognition systems.

Figure 2. Example of a 27-channel mel-filterbank spanning the frequency range 100–2000 Hz.
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Belin (2006) argues that many of the “voice perception” abilities might be shared between 
human and non-human primates. Therefore, MFCC feature representations might be good 
candidates for caller recognition studies in non-human primates. Other reasons to use 
MFCCs in our Gaussian mixture model (GMM)-based framework exist as well. First, thanks 
to the discrete cosine transform used in their calculation, MFCCs tend to be uncorrelated 
and can thus be more efficiently modelled using GMMs with diagonal covariance matrices, 
as applied to text-independent individual recognition, which works regardless of the actual 
words being spoken. Second, noise robustness of the MFCC features has been demonstrated 
in several previous studies (Quatieri 2002; Clemins et al. 2005; Fox et al. 2008). Third, 
MFCCs show high accuracy, stability, and repeatability (Cheng et al. 2010). And finally, 
MFCCs are now also increasingly applied to caller recognition of animals such as elephants 
(Clemins et al. 2005), passerine birds (Trawicki et al. 2005; Fox 2008; Cheng et al. 2010), 
toothed whales (Brown et al. 2010), and blue monkeys (Mielke and Zuberbühler 2013).

As shown in Figure 3, speaker recognition systems consist of two stages, namely fea-
ture extraction (i.e. MFCCs as mentioned above), also called front-end, and classification, 
also called back-end, where acoustic space (i.e. distribution of acoustic features) for each 
speaker is estimated using GMMs (enrolment) and subsequent verification trials are used 
as validation (Sadjadi et al. 2013). Sadjadi et al. adopted a GMM-UBM framework, where 
the universal background model (UBM) is a GMM that is trained on a pool of data from 
a number of speakers (or here: callers). Ideally, the UBM should reflect actual operating 
acoustic conditions at hand (i.e. background noise). There are also speaker-specific (or 
caller-specific) models that are adapted from the UBM using the maximum a posteriori 
(MAP) estimation approach. After the enrolment phase, each test call is scored either against 
all enrolled speaker models to detect who is calling (speaker identification), or against the 
background model and a given speaker model to accept/reject an identity claim (speaker 
verification) (Reynolds et al. 2000). Here, two scenarios are possible: in the first case, this 
identity claim refers to a closed-set where the speaker or caller is known a priori to belong 
to a set of M speakers (callers). In the second case, a speaker or caller does not belong to 
the set, which is called an open-set scenario. In the latter case a threshold value is needed 
to decide whether a speaker (caller) belongs to the set or is out of the set (Ramachandran 
et al. 2002).

Figure 3. Two stages of speaker recognition system: MFCC extraction in the front end and classification 
procedure in the back end.
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4    B. Spillmann et al.

Almost all the previous studies on individual identification used MFCCs that were 
extracted from high-quality recordings with close-range microphone-caller distances. But 
in the case of an ALS with stationary microphones, microphone-caller distances, and thus 
the quality of the signals, are highly variable. In this study, we test the accuracy of an auto-
matic caller recognition approach in orangutan (Pongo pygmaeus wurmbii) long calls (Figure 
4). The long call is a series of pulses of different pulse types and of highly variable total 
duration, and discrimination has been reported on a geographic, individual, and contextual 
level (Delgado 2007; Ross and Geissmann 2007; Spillmann et al. 2010). We test two sets of 
long call recordings in order to match recording conditions (Ramachandran et al. 2002): (i) 
recordings recorded with short microphone-caller distance (10–20 m) using a Sennheiser 
ME67 directional microphone during individual focal follows to evaluate the feasibility 
of this approach in general, subsequently referred to as high-quality recordings, and (ii) 
recordings from a microphone grid (ALS), with lower signal-to-noise ratios (SNR) due to 
increased and variable microphone-caller distances and the omnidirectional characteristics 
of the SMX-II microphone, subsequently referred to as low-quality recordings. We test the 
validity of this procedure in such a system (more details on ALS see Spillmann et al. 2015).

A speaker recognition system can be text-dependent or text-independent. The difference 
between the two is that in the text-dependent system a fixed phrase needs to be spoken by 
each individual whereas in the text-independent system no restriction exists in this respect 
(Ramachandran et al. 2002). The GMM-UBM framework we employed is text-independent. 
We used this text-independent approach for two reasons: (i) the long calls produced by 
flanged male orangutans consist of various distinct pulse types (Ross and Geissmann 2007; 
Spillmann et al. 2010), and (ii) long call duration is highly variable ranging from 18 s up 
to 3 min (Delgado 2007). Previous work used acoustic measurements taken at particular 
pulse types (Delgado 2007; Spillmann et al. 2010) to demonstrate the feasibility of individual 
discrimination (not to be mistaken with automatic identification).

We approach the challenge of individual identification of long-calling orangutan males 
with a software originally developed for human speaker recognition. We used MFCCs for 
feature extraction available in MATLAB Voicebox (http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html) as front-end, and the GMM-UBM framework available in the 
MSR identity toolbox in MATLAB (Sadjadi et al. 2013) as back-end for speaker recognition 
in order to validate the potential of caller recognition in orangutans applied to a closed set 
of individuals.

Figure 4. Spectrogram of a long call as used for MFCC extraction.
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Methods

Study area

Long call recording data presented here stem from Tuanan field station in Central 
Kalimantan, Indonesia (2.151° South; 114.374° East). The field site is part of an area man-
aged by a non-governmental organization (Mawas) and covers a 1000 ha trail-system in a 
peat swamp forest that previously underwent selective logging 20 years earlier. Researchers 
and well-trained long-term field assistants conducted individual focal follows according 
to the standardized field methods (available online at http://www.aim.uzh.ch/Research/
orangutannetwork/FieldGuidelines.html). This research project adhered to the American 
Society of Primatologists (ASP) principles for the ethical treatment of non-human primates.

Caller recognition

High-quality recordings
During individual focal follows of flanged male orangutans long calls were recorded when-
ever possible. We used a Sennheiser ME67 shotgun microphone in combination with a 
Roland Edirol R09 digital recorder. Recordings were taken at distances of around 10–20 m 
from the calling male with a sample rate of 44.1 kHz and sample size 16-bit. We tested 
224 long calls given by 14 different individuals. Recordings were taken during 2007–2013. 
We tested the accuracy of caller recognition by using the MATLAB MSR Identity toolbox 
(Sadjadi et al. 2013). Because the frequency content of the recordings is limited to at most 
3 kHz, the original recordings were re-sampled to 16 kHz to increase the computational 
efficiency of the subsequent processing for the caller identification task.

Three main steps are involved in the speaker recognition procedure: (1) extraction of 
MFCCs from all waveforms, (2) training of the recognition algorithm with GMMs (GMM-
UBM framework), and (3) scoring each test call against all speaker models established in 
the training phase to determine the caller’s identity. We divided the long call data into 4 
different training sets (80% of an individual’s calls) and 4 different test sets (20% of an indi-
vidual’s calls). Each established verification is scored and assigned to a probability value of 
matching the identified individual through the GMM-UBM framework.

We ran two different caller recognition tests with the sampled high-quality recordings. 
The first one included MFCC extractions established with mel frequency filters adjusted to 
the range 100–2000 Hz. The second test included MFCC extractions with mel frequency 
filters adjusted to the range 130–1400 Hz, reflecting the available frequency range of far-dis-
tance recordings where sound degradation acted on higher frequencies (see below ALS 
recordings). We aimed to test whether lower frequency ranges downgrade accuracy of caller 
recognition and if so to what extent.

To test whether the probability of identification of the GMM-UBM framework predicted 
identification, we ran a binomial generalized linear mixed model (GLMM) with correct-
ness of recognition as response variable and the GMM-UBM probability of recognition as 
predictor, including individuals as random effect.

Recordings from the ALS
The microphone grid consisted of 20 omnidirectional SMX-II microphones in combination 
with SM2+ recorders and covered an area of 450 ha localization area at Tuanan field site 
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(Spillmann et al. 2015). Sample rate was set to 22.05 kHz but was subsequently downsam-
pled to 16 kHz in order to increase the computational efficiency of the speaker recognition 
system. We tested long calls recorded by the ALS with known identity due to individual 
focal follow data where time and location of calling is recorded. We were able to establish 
an ALS data-set with long calls given by 10 individuals, with a total number of 123 long 
calls to test caller recognition with known microphone-caller distances. We selected long 
call recordings that showed the whole frequency range of the fundamental frequency in the 
spectrographic representations and without interfering background noise by conspecific 
(long call overlap) or heterospecific sounds (e.g. gibbon songs, pigtail macaque calls) but 
also noise of anthropogenic origin, such as the sound of boat engines. Microphone-caller 
distances varied between 20 and 420 m. As with the recordings made during focal follows, 
mel frequency filters were adjusted to the range 130–1400  Hz. Similar to our previous 
experiment, we divided the long call data into 4 different training sets (80% of an individual’s 
calls) and 4 test sets (20% of an individual’s calls). In order to visualize the performance of 
the caller recognition procedure we established a confusion matrix which contains infor-
mation about the actual and predicted classification done by the GMM-UBM framework.

As with the focal animal recordings, we also used a binomial GLMM to test whether the 
probability of identification of the GMM-UBM framework, the microphone-caller distance 
and the angle between call direction and microphone position (see Figure 5) were valuable 
predictors for correct or incorrect identification. We used 4 categories for the angle-varia-
ble: 1 = long call direction <45°; 2 = LC direction >45° <90°; 3 = LC direction >90° <135°; 
and 4 = LC direction >135° <180°. We controlled for the possible impact of individuals by 
entering them as random effect.

Results

High-quality recordings

We used automatic speaker recognition software to establish the accuracy of orangutan long 
call identification of high-quality recordings with microphone-caller distances between 
10 and 20  m. We ran the identification procedure two times with different filterbank 

Figure 5. Microphone-caller distance and angle between call direction and microphone.
Notes: We used 4 angle categories. The example in the figure shows a call direction of angle category 2 (>45° <90°) in relation 
to the microphone position.
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configurations for MFCCs. The frequency range 100–2000 Hz resembles the frequency 
distribution of a long call and with this range we obtained a 93.32% correct caller recognition 
rate. In order to test the accuracy of the smaller bandwidth that resembles the bandwidth 
of lower quality recordings, we extracted MFCCs between 130 and 1400 Hz of the same 
data-set as above and observed a slight degradation in accuracy with a 90.66% correct caller 
recognition rate (Table 1). Thus, there was a marginal reduction in accuracy of around 3% 
with the reduced bandwidth.

We examined with a binomial GLMM whether the probability value of the GMM-UBM 
framework is a valuable predictor for correctness of caller recognition. We corrected for 
individual impact by entering them as a random effect. Both statistical models with data-
sets a (full bandwidth) and b (reduced bandwidth) showed that the probability value of the 
GMM-UBM framework is a highly significant predictor for correctness of caller identifi-
cation (see Table 2(a) and (b)).

Recordings from the ALS

In the next step, we tested the accuracy of long call identification with variable micro-
phone-caller distances (20–420 m). We ran the identification algorithm for 123 long calls 
given by 10 individuals, and found that 72.23% of calls were correctly identified (Table 3). 
The confusion matrix (see Table 4) of caller recognition shows the results for each tested 
individual for distances <420 m and distances <300 m, with the improvement of identifica-
tion with shorter microphone caller distances indicated in bold. The result of the binomial 
GLMM shows that the probability value of the GMM-UBM framework best predicts correct 
or incorrect assignments (see Table 5) but also that increasing microphone-caller distance 
negatively affects identification whereas an increasing angle between call direction and 
microphone shows a tendency to do so too (see Figure 6 and Table 5).

Table 1. Results of caller recognition using high-quality recordings from 14 individuals with 224 identi-
fications.

Frequency range (Hz)

1. set 2. set 3. set 4. set Average Range

% of correct assignments
a. 100–2000 91.07 91.07 94.64 96.49 93.32 91.07–96.64
b. 130–1400 87.5 85.71 96.43 92.98 90.66 85.71–96.43

Table 2(a) and (b). The effect of the probability value (a) full bandwidth of long calls and (b) reduced 
bandwidth on correctness of caller identification.

Note: Parameter estimates, associated standard errors and statistical significance as obtained from a binomial GLMM.

Estimate Std. Error z value Pr(>|z|)

Dataset (a)
(Intercept) −17.145 3.863 −4.438
Probability 33.68 7.026 4.794 <0.001

χ2
LRT = 47.005, p < 0.001

Dataset (b)
(Intercept) −9.044 3 −3.015
Probability 19.491 5.24 3.72 <0.001
χ2

LRT = 19.838, p < 0.001
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8    B. Spillmann et al.

Table 3. Results of caller recognition using long call recordings from the microphone grid with variable 
caller-microphone distances (20–420 m).

Note: Sample consisted of 123 long calls given by 10 individuals.

Frequency range (Hz)

1. set 2. set 3. set 4. set Average Range

% of correct assignments
130–1400 77.41 80.64 63.33 67.74 72.28 63.33–80.64

Table 4. Confusion matrix of caller recognition with variable microphone-caller distances.

Note: Improvement of caller recognition by reducing microphone-caller distance from <420 to <300 m denote in bold.

Table 5. The effect of the probability value, the microphone-caller distance, and the angle calling direc-
tion-microphone on correctness of caller identification.

Note: Parameter estimates, associated standard errors and statistical significance as obtained from a binomial GLMM.

Fixed effects Estimate Std. Error z value Pr(>|z|)
(Intercept) −24.317 7.077 −3.436
Probability 46.317 13.126 3.529 <0.001
Microphone-caller distance −0.760 0.321 −2.369 0.018
Angle calling direction-microphone −1.279 0.674 −1.897 0.058
χ2

LRT = 32.63, p < 0.001

Figure 6.  Likelihood of correct identification with increasing microphone – caller distances.
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Discussion

The aim of this study was to test the potential of an automatic speaker recognition system 
(originally developed for human voice recognition) applied to orangutan long calls. High-
quality recordings with close-range microphone-caller distance (directional microphone) 
yielded 93.3% (by chance 7.14%) correct caller recognition (Table 1). Low-quality record-
ings (omnidirectional microphone) and variable, usually far greater, microphone-caller 
distances (20–420 m) yielded 72.28% (by chance 10%) correct caller recognition (Table 
3). These results reflect the ability of individual recognition known from experimental 
tests in different primate species (i.e. Snowdon and Cleveland 1980; Cheney and Seyfarth 
1982; Rendall et al. 1996). In both cases (high- and low-quality recordings), the probability 
value of the GMM-UBM framework can be used as a benchmark for correctness of caller 
recognition. This result indicates that high probability values indicate more confidence in 
accuracy of the identification result (Tables 2 and 5). As expected, microphone-caller dis-
tance had a negative effect on the accuracy of caller recognition, whereas the angle between 
call direction and microphone tended to do this too (Table 5 and Figure 6).

The degradation of accuracy in caller recognition from high-quality recordings to 
low-quality recordings was expected, but despite the large variation of microphone-caller 
distances the result of the low-quality recordings (72.28%) is still far above the identification 
success expected by chance of 10% (for 10 individuals). The different microphone-caller 
distances incorporate much variation based on biotic and abiotic factors. Biotic factors 
include background noise caused by other animal calls or by anthropogenic origin (noise of 
boat engines), and degradation of sounds by the vegetative structure of the location. Abiotic 
factors include attenuation of sounds due to the distance of the recorded call, or weather- or 
climate-related effects (Kirschel et al. 2009). A major limitation in applying the validated 
method is distance. Our result suggests that long call identification at far distances yields 
lower accuracy due to sound attenuation and signal degradation that results in low SNR. 
Nevertheless, our approach yields a remarkably high accuracy in light of the highly variable 
microphone-caller distances. Indeed, another study that tested individual discrimination of 
long calls by applying acoustic measurements of re-recorded playbacks at different distances, 
found possible discrimination up to 300 m (Lameira and Wich 2008). Additionally we found 
a tendency of a negative effect of the angle between call direction and microphone, which 
implies that long calls may have a directional characteristic.

Our results suggest that automatic individual identification is reliable for distances up to 
420 m. The limitations of this approach are sound degradation and background noise that 
masks the signal of interest. This raises the question whether these processes also impair the 
orangutans’ ability to recognize the identity of the long caller at farther distances. Evidence 
for improved perception of a target signal in spite of noise and degradation comes from the 
so-called cocktail party effect encountered in human and animal communication literature, 
where selective attention tunes out all but the signal of interest (Aubin and Jouventin 1998; 
Ebata 2003). Obviously, group living animals may face the cocktail party problem, but 
also heterospecific signallers may contribute to a receiver’s perception problem (Bee and 
Micheyl 2008). In orangutans the latter incidence is plausible: orangutans are semi-solitary 
and long call overlap is rare, but rainforests are quite noisy habitats (Slabbekoorn 2004). 
In future work, we plan to test whether responses to distant long calls deviate from those 
to closer ones.
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In conclusion, this study demonstrates that an automatic speaker recognition system 
originally developed for human voice recognition provides a promising and viable tool 
for animal vocal communication research and in particular for the identification of calling 
individuals recorded by a PAM system. Note, however, that the validation presented here 
considered a closed-set scenario, and that when applying this method to PAM data without 
knowledge of the caller identity, an open-set approach is required to account for new indi-
viduals that may move into a monitored area. We propose that automatic caller recognition 
is a valuable tool to identify individuals by their calls stemming from PAM and ALSs. Its 
use can greatly facilitate field research on vocal communication.
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