Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN
Main Article Content
Abstract
The number of positive examples of Coronavirus continues to grow every day, especially in Indonesia. In an effort to reduce the surge in the higher case, the government carried out vaccination programs provided free for all Indonesian people. One vaccine given to Masyara-kat is the Astra Zeneca vaccine. In the provision of these vaccines bring benefits and losses in the community, some are supported and doubtful, some even refuse. On social media Twitter, Astra Zeneca is one of the most widely discussed in social media because of the many opinions or opinions that have sprung up from various circles. Some opinions from the community on Twitter will be used as data to examine the analysis of sentiment in the Astra Zeneca vaccine that utilizes the Naïve Bayes and K-NN methods. It is expected to produce an accurate level of accuracy. Based on the results of the study found different levels of accuracy, for the use of the Naïve Bayes method produced an accuracy rate of 90.71% +/- 4.66% (Micro Average: 90.77%) while the KNN method produced an accuracy rate of 74.78% +/- 3.74% (micro Average: 74.77%).
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to JTIK journal and Research Division, KITA Institute as the publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.Â
JTIK journal and Research Division, KITA Institute and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in JTIK journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JTIK]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax : Â
Taufiq Iqbal (Editor-in-Chief)
Editorial Office of Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)
Research Division, KITA Institute
Teuku Nyak Arief Street Nomor : 7b, Lamnyong, Lamgugop, Kota Banda Aceh
Telp./Fax: 0651-8070141
Email:Â jtik@lembagakita.org - journal@lembagakita.org
References
Narulita, L.F. and Sulistyawati, D.H., 2021. Pengumpulan Data Twitter Tentang Covid-19 di Indonesia untuk Menghitung Tingkat Engagement Pengguna. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(3), pp.565-570.
Kartino, A. and Anam, M.K., 2021. Analisis Akun Twitter Berpengaruh terkait Covid-19 menggunakan Social Network Analysis. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), pp.697-704.
[Djamaludin, M.A., Triayudi, A. and Mardiani, E., 2022. Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 6(2), pp.161-166.
Kaparang, S., Kaparang, D.R. and Rantung, V.P., 2021. Analisis Sentimen New Normal Pada Masa Covid-19 Menggunakan Algoritma Naive Bayes Classifier. Jointer-Journal of Informatics Engineering, 2(01), pp.16-23.
Syarifuddinn, M., 2020. Analisis sentimen opini publik terhadap efek PSBB pada twitter dengan algoritma decision tree, knn, dan naïve bayes. INTI Nusa Mandiri, 15(1), pp.87-94.
Shamrat, M.F.M.J., Chakraborty, S., Imran, M.M., Muna, J.N., Billah, M.M., Das, P. and Rahman, O.M., 2021. Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 23(1), pp.463-470.
Syarifuddinn, M., 2020. Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes dan Knn. Inti Nusa Mandiri, 15(1), pp.23-28.
Harun, A. and Ananda, D.P., 2021. Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve bayes dan Decission Tree: Analysis of Public Opinion Sentiment About Covid-19 Vaccination in Indonesia Using Naïve Bayes and Decission Tree. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), pp.58-64.
Lengkong, N.C., Safitri, O., Machsus, S., Putra, Y.R., Syahadati, A. and Nooraeni, R., 2021. Analisis Sentimen Penerapan Psbb Di Dki Jakarta Dan Dampaknya Terhadap Pergerakan Ihsg. Jurnal Teknoinfo, 15(1), pp.20-25.
Septiana, R.D., Susanto, A.B. and Tukiyat, T., 2021. Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 5(1), pp.49-56.
Susilawati, S., Sembiring, Z. and Muhathir, M., 2020. Motion Monitoring System Based on IoT. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 3(2), pp.266-271.
Putra, T.W., Triayudi, A. and Andrianingsih, A., 2022. Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naï ve Bayes, KNN, dan Decision Tree. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 6(1), pp.20-26.
Pamungkas, F.S. and Kharisudin, I., 2021, February. Analisis Sentimen dengan SVM, NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 4, pp. 628-634).
Pertiwi, M.W., 2019. Analisis sentimen opini publik mengenai sarana dan transportasi mudik tahun 2019 pada twitter menggunakan algoritma naïve bayes, neural network, KNN dan SVM. Inti Nusa Mandiri, 14(1), pp.27-32.
Lestari, S. and Saepudin, S., 2021, September. Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes. In Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra (Vol. 1, No. 01, pp. 163-170).
Suryono, S., Utami, E. and Luthfi, E.T., 2018. Analisis Sentiment Pada Twitter Dengan Menggunakan Metode Naïve Bayes Classifier. Seminar Nasional GEOTIK 2018.
Fairuz, A.L., Ramadhani, R.D. and Tanjung, N.A.F., 2021. Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter. Indonesian Journal of Data Science, IoT, Machine Learning and Artificial Intelligence, 1(1), pp.41-150.
Arsyad, Z., 2019. Text Mining Menggunakan Generate Association Rule With Weight (Garw) Algorithm Untuk Analisis Teks Web Crawler. INTERNAL (Information System Journal), 2(2), pp.153-171.
Sautomo, S., Hafidz, N., Achyani, Y.E. and Gata, W., 2020. SENTIMENT ANALYSIS DUE TO" MUDIK" PROHIBITED OF COVID-19 THROUGH TWITTER. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), 6(1), pp.7-12.
Yunitasari, Y. and Putera, A.R., 2021. Analisis Sentimen Masyarakat di Twitter Terkait Pandemi Covid-19. SMATIKA JURNAL, 11(01), pp.22-26.
Romadhon, M.R. and Kurniawan, F., 2021, April. A Comparison of Naive Bayes Methods, Logistic Regression and KNN for Predicting Healing of Covid-19 Patients in Indonesia. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 41-44). IEEE.
Fitriana, F., Utami, E. and Al Fatta, H., 2021. Analisis Sentimen Opini Terhadap Vaksin Covid-19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes. Jurnal Komtika (Komputasi dan Informatika), 5(1), pp.19-25.