Reviews
Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study
Kamich McGaIn, Douglas B. Kerlin, William Ellis, and Frank Carrick

Letters
Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey
Senna Salonen, Michel Valiente, David Buizer, Utrine Dumoul, and Evert Thomas

Real-world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy
Dan F. Rosauer, Margaret Byrne, Mary P. K. Blem, David J. Souto, Stephen Donnelly, Paul Drayton, J. Scott King, Anjum Kinsch, Rebecca J. Laver, Cecilia Myers, Paul M. Oliver, Sally Peter, Daniel L. Robert, Ava Calippino Alpero Sila, John Smith, and Craig Martin

Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning
Raphael A. Magnac, Marco-Andrèille, Robert L. Porrey, David Buizer, Alain Dalongeville, Martin S. Sear, and Stephanie Hamel

Conserving biodiversity and Indigenous bush tucker: Practical application of the strategic foresight framework to invasive alien species management planning
Yves M. Addams, Michael M. Douglass, Sue E. Jackson, Kelly Scheepers, Jonathan T. Keogh, and Samantha A. Satterfield

Vaccination protects endangered albatross chicks against avian cholera
Vincent Bourret, Amandine Gamble, Jérémy Tornos, Audrey Jaeger, Karine Delord, Christophe Barbraud, Pablo Testa, Sarah Kada, Jean-Baptiste Thiebot, Eric Thibault, Hubert Gamlet, Henri Loup, Romain Garnier, and Thierry Brault

The underestimated contribution of mangrove protection in Mexico to carbon emission targets
Maria Fernanda Adame, Christopher James Brown, Marylin Bejarano, Jorge Alfredo Herrera-Silveira, Paula Ezcurra, J. Boone Kauffman, and Richard Birdsey

Present and future biodiversity risks from fossil fuel exploitation
Michael B. J. Harfoot, Derek P. Tittensor, Sarah Knight, Andrew P. Arnell, Simon Rhyol, Sharon Brooks, Stuart H. M. Butchart, Jon Button, Matthew D. Jones, Valerie Rapis, Sam PW. Schirmer, dan Neil D. Burgess

Intention to kill: Tolerance and illegal persecution of Sumatran tigers and sympatric species
Peter A. V. M. John, Matthew Landa, Debraj J. Marley, Betty Bilis/Naawart, Anouk E. McKay, Fakhruddin M. Mangunjaya, Nigel Leader-Williams, and Matthew J. Tryon

Maximizing biodiversity conservation and carbon stocking in restored tropical forests

CITES-listed sharks remain among the top species in the contemporary fin trade
Diego Cardeñosa, Andrew T. Fields, Elizabeth A. Babcock, Huarong Zhang, Kevin Feldheim, Stanley K. H. Shea, Gunter A. Fischer, and Demian D. Chapman

Policy Perspectives
Seizing opportunities to diversify conservation
Roxelle E. Gould, Indira Phukan, Mary E. Mondy, Nicole M. Arko, and Rina Punikker

Widespread occurrence of an emerging fungal pathogen in heavily traded Chinese urodelean species
Zhiyong Yuan, An Marleé, Jun Wu, Sarah Van Praet, Stefano Canessa, and Frank Pasmans

Desire with modification: Critical use of historical evidence for conservation
Simon Perry

Correspondence
On the definition and comparability of individual and group incentives for environmental conservation
Björn Vollan, Christian Stinow, and Tobias Vorderer

Environmental psychology must better integrate local cultural and sociodemographic context to inform conservation
Namita P. Parakh, Amelie Freile-Moreira, and Kimberly J. Beckage

Cover description: Yellow-nosed albatross (Thalassarche carteri) with its chick on Entrecasteaux cliff, Amsterdam Island, Indian Ocean
LETTERS

Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey
Rima Jalonen, Michel Valette, David Bashier, Jérôme Dumont, and Evert Thomas ... e12424

Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning
Rafael A. Magris, Marco Andreollo, Robert L. Pressey, David Mouillot, Alicia Dalongeville, Martin N. Jacob, and Stéphanie Manel ... e12439

Conserving biodiversity and Indigenous bush tucker: Practical application of the strategic foresight framework to invasive alien species management planning
Vanessa M. Adams, Michael M. Douglas, Sue E. Jackson, Kelly Scheepers, Johnathan T. Kool, and Samantha A. Setterfield ... e12441

Vaccination protects endangered albatross chicks against avian cholera
Vincent Bourret, Amanda Gamble, Jérémie Tornos, Audrey Jaeger, Karine Delord, Christophe Barbraud, Pablo Tortosa, Sarah Kada, Jean-Baptiste Thiebaut, Eric Thibault, Hubert Gantelet, Henri Weimerskirch, Romain Garnier, and Thierry Boulinier ... e12443

The undervalued contribution of mangrove protection in Mexico to carbon emission targets
María Fernanda Adame, Christopher James Brown, Marylin Bejarano, Jorge Alfredo Herrera-Silveira, Paula Ezcurrea, J. Boone Kauffman, and Richard Birdsey ... e12445

Present and future biodiversity risks from fossil fuel exploitation
Michael B. J. Harfoot, Derek P. Tittensor, Sarah Knight, Andrew P. Arnell, Simon Blyth, Sharon Brooks, Stuart P. Smith, and Craig Mortiz ... e12438

Intention to kill: Tolerance and illegal persecution of Sumatran tigers and sympatric species
Freya A. V. St. John, Matthew Linkie, Deborah J. Martyr, Betty Miliyanawati, Jeanne E. McKay, Fachruddin M. Mangunjaya, Nigel Leader-Williams, and Matthew J. Staveley ... e12448

Maximizing biodiversity conservation and carbon stocking in restored tropical forests
Pedro H.S. Brancalion, Carolina Bello, Robin L. Chazdon, Mauro Galetti, Pedro Jordano, Renato A.F. Lima, Aretha Medina, Marco Aurélios Pizo, and J. Leighton Reid ... e12451

CITES-listed sharks remain among the top species in the contemporary fin trade
Diego Cardellosa, Andrew T. Fields, Elizabeth A. Babcock, Huangrong Zhang, Kevin Feldheim, Stanley K. H. Shea, Gunter A. Fischer, and Demian D. Chapman ... e12457

POLICY PERSPECTIVES

Seizing opportunities to diversify conservation
Rachelle K. Gould, Indira Phukan, Mary E. Mendoza, Nicole M. Ardoin, and Bindu Panikkar ... e12431

Widespread occurrence of an emerging fungal pathogen in heavily traded Chinese urodelan species
Zhiyong Yuan, An Martel, Jun Wu, Sarah Van Pruut, Stefano Canessa, and Frank Pasmans ... e12436

Descent with modification: Critical use of historical evidence for conservation
Simon Pooley ... e12437

CORRESPONDENCE

On the definition and comparability of individual and group incentives for environmental conservation
Björn Vollan, Christian Hönow, and Tobias Vorlaufer ... e12577

Environmental psychology must better integrate local cultural and sociodemographic context to inform conservation
Hannah E Parathian, Amélia Frazão-Moreira, and Kimberley J Hockings ... e12590

Cover description: Yellow-nosed albatross (Thalassarche carteri) with its chick on Entrecasteaux cliff, Amsterdam Island, Indian Ocean
Abstract

Tolerance may lessen when wildlife adversely impacts people. Models from psychology can help elucidate how people make judgments, why they act accordingly, and whether beliefs and norms influence support for policy and intervention. Working in a globally important region for tigers, we estimated hunting prevalence for this endangered species and three sympatric taxa using methods for asking sensitive questions. We also investigated the relative strength of ethnicity and social-psychological predictors in influencing intention to hunt. Men's behavioral intention and perceptions differed by species: proconservation values were most prevalent for tiger, weakest for wild boar. Perceived behavioral control was the strongest predictor of hunting-intention; affect and injunctive norms were also important. The prominence of affect in determining intention suggests increasing environmental knowledge is unlikely to curb hunting. However, existing norms could be leveraged to incentivize behavior change. Integrating behavior-change models into conservation science is crucial where strategies require changes in people's actions.

KEYWORDS

affect, endangered species, hunting, Indonesia, norms, randomized response technique

1 | INTRODUCTION

As rural populations grow, people can come into greater contact with wildlife. Where wildlife adversely impacts people, tolerance may be lessened (Redpath et al., 2013). Tolerance can be attitudinal, such as beliefs and values, and behavioral, such as killing or political lobbying (Bruskotter & Wilson, 2013). Viewed on a continuum (Figure 1), intolerance and stewardship are expressed through actions including killing animals or political lobbying for/against a species, while acceptance/tolerance is a passive concept requiring no action (Bruskotter & Fulton, 2012). This conceptualization permits the application of models and hypotheses from psychology to better our understanding of how people formulate judgments, and ultimately why they act as they do.

Observed behavior and behavioral intention are considered the best indicators of species tolerance, and antecedents of both have been studied extensively (Bruskotter & Fulton, 2012; Bruskotter & Wilson, 2013). For example, the theory of planned behavior (TPB) posits that behavioral intention, the immediate precursor to behavior, is shaped by attitude toward the behavior, perceived societal expectations (subjective...
Intolerance

Behaviours that might negatively impact wildlife.
(e.g. unsustainable hunting, poisoning, political support of action to reduce/eradicate populations).

Acceptance/Tolerance

Behaviours that positively impact wildlife.
(e.g. donating to interest groups, providing feed, housing or habitat, political support of actions to maintain/increase populations).

Stewardship

Behaviours that positively impact wildlife.

Passive acceptance

FIGURE 1 A conceptual model of wildlife conservation behavior adapted from Bruskotter and Fulton (2012). Intolerance and stewardship, expressed through actions, may be viewed as sitting at opposite ends of a spectrum of conservation-related behaviors. Acceptance/Tolerance sits in the middle and is not necessarily expressed through tangible acts.

norms) and the perceived behavioral control (PBC) people believe they have (Fishbein & Ajzen, 1975).

The relative importance of TPB constructs varies across behaviors. For example, attitude best predicted ranchers’ intention to kill jaguar in Amazonia (Marchini & Macdonald, 2012), while PBC was the strongest predictor of intention to hunt deer in the United States (Shrestha, Burns, Pierskalla, & Selin, 2012). Factors including affect and norms are also important predictors of behavior, as are the perceived probability of capture and punishment when examining rule-breaking (Nagin, 1998). Slagle, Bruskotter, and Wilson (2012) showed how affect, the instant feeling of goodness or badness people have to stimuli (Slovic, Finucane, Peters, & MacGregor, 2007; Wilson, 2008), influenced people’s beliefs about wolf recovery. Positive emotions were associated with positive beliefs about wolf recovery, and had a greater influence on people’s intention to engage in politically relevant behavior with respect to recovery, than knowledge of wolf biology (Slagle et al., 2012). Descriptive norms are one’s perception of what most people do and they motivate individuals to act accordingly (Cialdini, Kallgren, & Reno, 1991). In contrast, injunctive norms are perceptions of what most people approve/disapprove of, defining how individuals act according to group rules (Cialdini et al., 1991). Both types of norms can trigger behavioral changes (Cialdini, 2003) and there is evidence they relate to conservation compliance. For example, in Taiwan people reporting little awareness (descriptive) and familial disapproval (injunctive) of killing leopard cats were less likely to have killed them (St. John, Mai, & Pei, 2015).

There is clear evidence that factors such as beliefs and affect, through their role in judgment and decision making, influence support for policy and management actions (Finucane, Alhakami, Slovic, & Johnson, 2000; Slagle et al., 2012) and that studies investigating the relative importance of behavioral predictors can usefully inform the design of conservation interventions (Marchini & Macdonald, 2012; Slagle et al., 2012). Building on such studies, we investigate hunting prevalence of tigers and three sympatric species (boar, Sus scrofa; sambar, Rusa unicolor; pangolin, Manis javanica) in Sumatra, Indonesia. Furthermore, we measure the relative strength of ethnicity and social-psychological factors in influencing men’s intention to hunt these species, which vary in protection status and perceived value to people.

Sumatran people are renowned for their diverse cultural and spiritual beliefs, which are thought to permeate their interactions with wildlife (Bakels, 2013). While Christianity may attribute souls exclusively to people, such spiritual elitism is incomprehensible to many Asians (McNeeley & Sochaczewski, 1988). Minangkabau and Kerincinese reportedly believe ancestral souls transfer to tigers, which then protect people, only attacking someone who breaks customary law (Bakels, 2013; McNeeley & Sochaczewski, 1988). We expected negative attitudes and affective responses, pro-killing norms, low perceived probability of enforcement, and high PBC to be indicative of intention to kill; ethnicity was expected to be related to intention, particularly for tiger. Understanding people’s relationship with different species can help develop a more complete picture of their ability to coexist with wildlife.

2 | METHODS

Identified as a global priority for tiger survival (Dinerstein et al., 2007), Kerinci Seblat National Park (KSNP) supports ~145 tigers, ~30% of the Sumatran population (Linkie, Chapron, Martyr, Holden, & Leader-Williams, 2006; Linkie et al., 2015), which exist despite encounters with people. Unlike other areas in Sumatra where forest has been converted to large-scale plantations, smallholder farming communities of different ethnicities border KSNP. Tigers occasionally attack livestock and people (Linkie, Dinata, Nofrianto, &
Leader-Williams, 2007), and key prey species, boar and sambhar, crop raid. While sambars are hunted for meat (Bakels, 2013), Islam prohibits consumption of boar so hunting for this purpose is unlikely. However, snares found in KSNP where all hunting is prohibited, are indiscriminate (Linkie et al., 2015). Regionally, increases in wildlife trade, particularly in tiger and pangolin, may be encouraging poaching of these species which, together with sambar, is prohibited throughout Indonesia (boar may be hunted outside of PAs).

Sampling was stratified across the landscape using information on 228 human-tiger incidents reported by local people (unpublished, Martyr). Each location was georeferenced and an observed incident density surface computed to identify low-, medium-, or high-incident study areas (Figure 2).

Following questionnaire piloting and revisions, data were gathered from a systematic sample of male and female heads-of-households between November 2014 and July 2016 by Indonesian enumerators. Sex of respondents was chosen at random and biased toward men because they are more likely than women to hunt (Wadley & Colfer, 2004; see Supporting Information).

Because hunting within KSNP is illegal, we used two forms of the randomized response technique (RRT), in addition to direct questions (DQ) to measure past hunting behavior. The proportion of people hunting was estimated using the forced response RRT (Warner, 1965). Equipment comprised 10 cards, 8 orange, one displaying, in Indonesian, “Yes” and another, “No.” Respondents selected one card prior to each sensitive question (Table 1). The “Yes” card demanded the prescribed answer “Yes”; the “No” card, “No.” The orange card required an honest answer, “Yes,” or “No.” The chosen card was never revealed to enumerators and was replaced after each question.

We estimated the prevalence of hunting using the partial additive randomized response technique (aRRT; Robinson, St. John, Griffiths, & Roberts, 2015). Forty-eight cards were held in a stack, 12.5% were marked “zero” and required respondents to answer honestly by reporting the frequency of the behavior defined in the question (Table 1). All other answers were randomized by the numbers 1, 2, 3, and 4 displayed on the cards with the corresponding frequencies 22, 6, 8, and 6. If a numbered card was selected, then respondents were asked to add their answer to the number displayed on the card. The frequency distribution of the cards had a mean of 1.95 and a variance of 1.28.

Respondents were randomly assigned to RRT or aRRT and completed an example prior to study questions. Hunting pressure was also estimated by asking respondents to report their yes/no (for RRT participants) or numeric response (for aRRT respondents) to the hunting questions directly at the end of the questionnaire. Acceptability of RRT and aRRT was measured using two statements (Table S1).

The questionnaire also included nine sections (Table S2) designed to examine factors underlying men’s intention to hunt specific species in the future, measured using a five-point ordinal scale (very weak = 1 to very strong = 5). Questions were asked separately for each species. To understand how people’s emotional response influences intention to hunt,

TABLE 1 Questions presented to RRT and aRRT respondents

<table>
<thead>
<tr>
<th>RRT</th>
<th>aRRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 In the last 12 months, have you tried to catch wild boar?</td>
<td>In the last 12 months, how many times have you tried to catch wild boar?</td>
</tr>
<tr>
<td>2 In the last 12 months, have you tried to catch sambhar?</td>
<td>In the last 12 months, how many times have you tried to catch sambhar?</td>
</tr>
<tr>
<td>3 Since the Mentawai earthquake and tsunami in 2010, have you tried to catch tiger?</td>
<td>Since the Mentawai earthquake and tsunami in 2010, how many times have you tried to catch tiger?</td>
</tr>
<tr>
<td>4 Since 2010, have you tried to catch pangolin?</td>
<td>Since 2010, how many times have you tried to catch pangolin?</td>
</tr>
<tr>
<td>5 Since 2010, have people from outside the village hunted tiger around here?</td>
<td>Since 2010, how many people from outside the village have hunted tiger around here?</td>
</tr>
<tr>
<td>6 Since 2010, have people in the village hunted tiger around here?</td>
<td>Since 2010, how many people in the village have hunted tiger around here?</td>
</tr>
</tbody>
</table>

Note: Men answered questions 1-7; women, questions 5-7.
respondents identified their position on two five-point semantic scales (good-bad; harmless-dangerous) after being shown an image of each animal. Many tools exist for measuring affect (Jacobs, 2012); to minimize cognitive burden, we used semantic scales which have proven proficient (Slagle et al., 2012). Answers to remaining questions were given on five-point Likert scales (strongly agree to strongly disagree). Attitudes toward the existence of each species were captured using two target-, action-, context-, and time-specific (Conner & Sparks, 2008) statements for example, “These days I think that [animal] in the village, on the farm land around the village and in the forest should be caught.” To investigate the relationship of descriptive and injunctive norms on people’s intention to hunt, respondents were asked to indicate if they felt that most people try to hunt each animal, and if they felt social pressure to catch each animal. Respondents indicated how much perceived behavioral control they had over hunting by stating how much they agreed/disagreed to the following statement “If the opportunity arose, I am confident I could catch [animal] around here if I wanted to.” Two statements were used to capture the core elements of enforcement, the perceived probability of capture and perceived probability of penalty once captured. Crop and livestock loss to study species occurring in the preceding 12 months was also recorded.

3 | RESULTS

The questionnaire was completed by 2,386 people, missing data were ≤1.7% for model variables; exceptions were probability of capture or punishment (≤3.5%). Mean age was 44 (SE ± 0.26), most had completed elementary (53.2%) or junior (23.0%) school and 73.9% were male. The majority were Minangkabau (45.4%) or Melayu (32.4%), 2.9% were Kerinci-nese (Table S3). Most people growing crops reported losses to boar (85.1%), but few to sambar (13.3%); 0.6% lost livestock to tigers. Among men, all DQ estimates significantly exceeded those of the RRT (Figure 3a). However, the aRRT estimated significantly higher frequencies of sambar and tiger hunting than DQ; while higher, women’s aRRT estimates of tiger hunting did not always differ significantly to DQ (Figure 3b).

Men’s perceptions toward wildlife differed by species, with proconservation values most prevalent for tigers and weakest for boar (Figure 4). The perceived probability of capture, and punishment if captured, were significantly correlated for all species (Pearson’s R; P < 0.05; boar = 0.67, sambar = 0.78, tiger = 0.73, pangolin = 0.76), so probability of punishment was omitted from models. Across all species, PBC was the strongest predictor of intention to hunt in the future. As PBC declined, so did intention (Table 2). The relative importance of other variables differed by species. Injunctive norm was particularly important for tigers (β = −0.83, P ≤ 0.001). By contrast, while a significant predictor for all other species, descriptive norm was weakly and not significantly related to men’s intention to kill tigers (β = −0.10, P = 0.30). The affective measure of danger was negatively and significantly related to intention to kill (except sambar), implying greater perceived danger equates to greater intention. Contrary to expectations, affect for tiger and pangolin measured via “bad-good” was positively related to intention, indicating that intention to kill increased with perceived goodness. Attitudes toward killing significantly predicted intention across all species; the probability of capture was not significantly related to intention for tiger or pangolin (Table 2).

4 | DISCUSSION

Most respondents reported experiencing crop loss to boar, which 13% of men admitting to trying to catch on average seven times in the preceding year. Coupled with 2% of men admitting to hunting sambar once during the same period, this equates to a substantial number of indiscriminate snares
Observed behavior and behavioral intention are considered the best indicators of tolerance for a species (Bruskotter & Wilson, 2013). When studying illegal acts, behavioral observation is challenging, so we used the RRT and the aRRT...
FIGURE 4 Distribution of social variables reported by men and described with mean and 95% confidence interval (wild boar $n = 1,739$, pangolin $n = 1,686$, tiger $n = 1,687$, sambar $n = 1,713$). With the exception of intention, variables are scaled such that the higher the value, the less inclined people were to hunt in the future. For example, an attitude toward killing or PBC score of 5 reflects disagreement with hunting and weak perceived control over performance of the behavior.

while also asking people to directly report their rule-breaking behavior. While there is substantial evidence that RRT returns higher estimates of rule-breaking under varied conservation contexts (Razafimanahaka et al., 2012; St. John et al., 2015), it was of limited use surrounding KSNP. However, despite being perceived by respondents as more difficult and less private than RRT, compared to asking men directly, aRRT estimated significantly higher hunting frequencies for four of six questions. An exception was boar, but since this species can be hunted beyond KSNP boundaries, this question is of limited sensitivity. Nevertheless, proximity to protected areas can impact the likelihood of people reporting rule-breaking behavior (Razafimanahaka et al., 2012).

Integrating behavior-change models into conservation science is crucial as emerging conservation strategies increasingly require widespread changes in people’s actions (Reddy et al., 2017). Many studies, including ours, measure predictors of behavior directly. While using value or belief-based measures, such as wildlife value orientations (Teel & Manfredo, 2010), provide advantageous insights into cognitive foundations of behavior, these values are less easily influenced by interventions; hence our focus on higher-order antecedents of behavior. We provide estimates of hunting and identify determining factors in a globally important tiger landscape. We conclude that awareness raising activities aimed at increasing knowledge of our study species may be of limited use in curbing men’s intention to hunt given the prominence of affect in determining intention (Slagle et al., 2012). However, existing personal values could be leveraged to incentivize behavior change in a similar manner to that which has been operationalized to reduce energy consumption (Allcott & Rogers, 2014). Such an approach would appeal to people’s affective intuitive and rational thinking simultaneously (Reddy et al., 2017). Applied in a standardized manner, our assessment of tolerance and behavioral intention could be upscaled to monitor threats to tigers or other conflict species. Doing so
would enable pre-emptive or responsive interventions targeting the strongest predictor(s) and thus actors engaged in specific behaviors, which likely vary by site. Furthermore, where intervention design is informed by sociopsychological investigation, these data double as a monitoring and evaluation baseline.

Societal goals of conserving nature will unlikely be achieved with a blanket approach to enforcement. We recommend further interrogation of psychological components underpinning decision making including in the area of audience segmentation which strives to design optimal interventions for groups sharing common psychographic attributes (Kurtz, 2012). Our study provides evidence that behavior-change models provide informative material for practitioners seeking to encourage compliance and coexistence with wildlife.

ACKNOWLEDGMENTS
We thank our local project partner Fauna & Flora International and Darmawan Liswanto for facilitating the study, Ika Agustin, Yulian Anggriawan, Karlina, and Erlinda Kartika for collecting the questionnaire data, and the thousands of respondents who gave us their time. This work was funded by a UK Leverhulme Trust Research Project Grant.

ORCID
Freya A. V. St. John http://orcid.org/0000-0002-5707-310X

Matthew Linkie http://orcid.org/0000-0002-0679-3684
Matthew J. Struiebig http://orcid.org/0000-0003-2058-8502

REFERENCES
Bruskotter, J. T., & Wilson, R. S. (2013). Determining where the wild things will be: using psychological theory to find tolerance for large carnivores. Conservation Letters, 7, 158–165.

Slagle, K. M., Bruskotter, J. T., & Wilson, R. S. (2012). The role of affect in public support and opposition to wolf management. Human Dimensions of Wildlife, 17, 44–57.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.